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Conditional Expectation

Conditional expectation is a powerful tool for computing expected values. By
employing techniques like conditioning on what we wish we knew, we can
often break down complex expectation problems into more manageable
parts.

Conditional expectation also allows us to make predictions or estimates
based on the evidence at hand. For instance, in statistics, we might want to
predict a response variable (such as house prices or sales performance) using
explanatory variables (like square footage or marketing budget).

We are going to talk about two di�erent notions of conditional expectation:

Conditional expectation  given an event: Let  be an r.v., and 
be an event. If we learn that  occurred, our updated expectation for 
are is denoted by  and computed analogously to , except
using conditional probabilities given .
Conditional expectation  given a random variable: a more subtle
question is how to de�ne , where  and  are both r.v.s.
Intuitively,  is the r.v. that best predicts  using only the
information available from .

E(Y |A) Y A

A Y
E(Y |A) E(Y )

A
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E(Y |X) X Y

E(Y |X) Y

X
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Conditional expectation given an event

Let  be an event with positive probability.

If  is discrete r.v., then the conditional expectation of  given  is:

where the sum is over the support of .
If  is continuous r.v. with PDF , then:

where the conditional PDF  is de�ned as the derivative of the

conditional CDF,  and can also be computed
by a hybrid version of Bayes’ rule:

A

Y Y A

E(Y |A) = ∑
y

yP(Y = y|A),

Y
Y f

E(Y |A) = ∫ ∞

−∞
yf(y|A)dy,

f(y|A)
F(y|A) = P(Y ≤ y|A),

f(y|A) = .
P(A|Y = y)f(y)

P(A)
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Confusing conditional expectation and unconditional expectation

Confusing conditional expectation and unconditional expectation is a
dangerous mistake. More generally, not keeping careful track of what you
should be conditioning on and what you are conditioning on is a recipe for
disaster.

Example: Sandra is 30 years old, and she hears that the average life
expectancy in her country is 80 years. Should she conclude that, on average,
she has 50 years of life left?

The answer is no, since there's a crucial piece of information that she must
condition on: the fact that she has lived to age 30 already.

If we denote  as Sandra's lifespan (expectancy at birth), we have that:

The left-hand side is Sandra’s life expectancy at birth (it implicitly conditions
on the fact that she is born), and the right-hand side is Sandra’s life
expectancy given that she reaches age 30.

In this case  is the event  that we are conditioning on.

T

E(T ) < E(T |T ≥ 30)

T ≥ 30 A
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Law of total expectation

Let  be a partition of a sample space, with  for all i,
and let  be a random viarable on this sample space. Then:

The following example uses �rst-step analysis to derive the expectation of the
Geometric distribution.

Example. Let . Interpret  as the number of Tails before the
�rst Heads in a sequence of coin �ips with probability  of Heads.

A1, . . . ,An P(Ai) > 0
Y

E(Y ) =
n

∑
i=1

E(Y |Ai)P(Ai).

X ∼ Geom(p) X

p

E(X) = E(X ∣ first toss H) ⋅ p + E(X ∣ first toss T) ⋅ q

E(X) = 0 ⋅ p + (1 + E(X)) ⋅ q = q + qE(X)

⇒ E(X) − q ⋅ E(X) = q ⇒ (1 − q) ⋅ E(X) = q ⇒ E(X) = = .
q

1 − q

q

p
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Conditional expectation given an r.v.

The key to understanding  where  and  are both r.v.s is �rst to
understand . Since  is an event,  is just
the conditional expectation of  given this event, and it can be computed
using the conditional distribution of  given .
If  is discrete, we use the conditional PMF  in place of
the unconditional PMF  :

Analogously, if  is continuous, we use the conditional  in

place of the unconditional PDF:

Notice that because we sum or integrate over  is a function
of  only. We can give this function a name, like  : let .
We de�ne  as the random variable obtained by �nding the form of
the function , then plugging in  for .

E(Y ∣ X) X Y

E(Y ∣ X = x) X = x E(Y ∣ X = x)
Y

Y X = x
Y P(Y = y ∣ X = x)

P(Y = y)

E(Y ∣ X = x) = ∑
y

yP(Y = y ∣ X = x)

Y PDF fY ∣X(y ∣ x)

E(Y ∣ X = x) = ∫
∞

−∞
yfY ∣X(y ∣ x)dy

y,E(Y ∣ X = x)
x g g(x) = E(Y ∣ X = x)

E(Y ∣ X)
g(x) X x 6 / 32



Conditional expectation given an r.v.

Let

Then the conditional expectation of  given  , denoted by , is
de�ned to be the random variable .

By de�nition,  is a function of , so it is a random variable. (This
does not mean there are no examples where  is a constant. A
constant is a degenerate r.v., and a constant function of . For example, if 
and  are independent then , which is a constant.)
Thus it makes sense to compute quantities like  and

, the mean and variance of the r.v. .
Important to keep in mind: conditional expectations of the form 
are numbers, while those of the form  are random variables.

g(x) = E(Y |X = x) = {∑
y
yP(Y = y ∣ X = x)  if X is discrete

∫ ∞
−∞ yfY ∣X(y ∣ x)dy  if X is continuous

Y X E(Y |X)
g(X)

E(Y ∣ X) X

E(Y ∣ X)
X X

Y E(Y ∣ X) = E(Y )
E(E(Y ∣ X))

Var(E(Y ∣ X)) E(Y ∣ X)
E(Y ∣ A)

E(Y ∣ X)
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Example. A stick of length 1 is broken at a point  chosen uniformly at
random. Given that , we then choose another breakpoint  uniformly
on the interval . Find , and its mean and variance.

Solution: From the description of the experiment,  and
.

Recall that  has  and .

Then .

By plugging in  for , we have

The expected value of  is

The variance of  is

X
X = x Y

[0,x] E(Y ∣ X)

X ∼ Unif(0, 1)
Y ∣ X = x ∼ Unif(0,x)

U ∼ Unif(a, b) E(U) = a+b

2 Var(U) = (b−a)2

12
g(x) = E(Y ∣ X = x) = =x

2
0+x

2

X x

g(X) = E(Y ∣ X) = X/2.

E(Y ∣ X)

E(E(Y ∣ X)) = E(X/2) = E(X) = .
1
2

1
4

E(Y ∣ X)

Var(E(Y ∣ X)) = Var(X/2) = ( )2

Var(X) = ⋅ = .
1
2

1
4

1
12

1
48
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Properties of conditional expectation

Dropping what's independent. If  and  are independent, then

Independence implies  for all , thus
.

Taking out what's known. For any function ,

This is the conditional version of the unconditional fact that .
The di�erence is that  asserts that two numbers are equal,
while taking out what's known asserts that two random variables are equal.

Intuitively, when we take expectations given , we are treating  as if it has
crystallized into a known constant. Then any function of , say , also
acts like a known constant while we are conditioning on .

X Y

E(Y ∣ X) = E(Y ).

E(Y ∣ X = x) = E(Y ) x

E(Y ∣ X) = E(Y )

h

E(h(X)Y ∣ X) = h(X)E(Y ∣ X)

E(cY ) = cE(Y )
E(cY ) = cE(Y )

X X
X h(X)
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The following example illustrates that we can have  doesn't
imply  and  are independent. That is, we can have  for
dependent r.v.s  and .

Example. Let  and . Find  and .

Solution: Since  is a function of ,

To get , notice that conditional on  equals  or 

with equal probabilities by the symmetry of the standard Normal.

Thus

Thus we have  despite the dependence between 

and .

E(Y |X) = E(Y )
X Y E(Y |X) = E(Y )

X Y

Z ∼ N (0, 1) Y = Z2 E(Y ∣ Z) E(Z ∣ Y )

Y Z

E(Y ∣ Z) = E (Z2 ∣ Z) = Z2.

E(Z ∣ Y ) Y = y,Z √y −√y

E(Z ∣ Y = y) = 0 and E(Z ∣ Y ) = 0.

E(Z ∣ Y ) = E(Z) = 0 Z

Y
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Linearity. Let  be r.v.s and  a constant. Then

 and

The next theorem connects conditional expectation to unconditional
expectation.

Adam’s law/ Tower Property. For any r.v.s  and ,

Adam's law is a more compact, more general version of the law of total
expectation (Theorem 9.1.5). For  discrete, the statements

mean the same thing, since if we let , then

X,Y ,Y1,Y2 c

E (Y1 + Y2 ∣ X) = E (Y1 ∣ X) + E (Y2 ∣ X)
E(cY ∣ X) = cE(Y ∣ X).

X Y

E(E(Y ∣ X)) = E(Y ).

X

E(Y ) = ∑
x

E(Y ∣ X = x)P(X = x) and E(Y ) = E(E(Y ∣ X))

E(Y ∣ X = x) = g(x)

E(E(Y ∣ X)) = E(g(X)) = ∑
x

g(x)P(X = x) = ∑
x

E(Y ∣ X = x)P(X = x).
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Example. A disoriented miner �nds themselves in a room of the mine with
three doors:

The �rst door brings them to safety after a 3 hours long hike.
The second door takes them back to the same room after 5 hours of
climbing.
The third door takes them again back to the same room after 7 hours of
exhausting climbing. The disoriented miner chooses one of the three
doors with equal chance independently each time they are in that room.
What is the expected time after which the miner is safe?

Solution.

Let  the initial choice of a door  and  be the time to reach
safety. Then 

X (= 1, 2, 3) Y

EY = E(E(Y ∣ X))

= E(Y |X = 1)P(X = 1) + E(Y |X = 2)P(X = 2) + E(Y |X = 3)P(X = 3)

⇒ EY = 3 ⋅ + (EY + 5) ⋅ + (EY + 7) ⋅
1
3

1
3

1
3

⇒ 3EY = 15 + 2EY ⇒ EY = 15

12 / 32



Example. Let  be i.i.d., and .
Find .

Solution: By symmetry,

and,

by linearity. Therefore,

the sample mean of the  's.

NOTE. This is an intuitive result: if we have 2 i.i.d. r.v.s  and learn that
, it makes sense to guess that  is 5 (accounting for half of

the total). Similarly, if we have  i.i.d. r.v.s and get to know their sum, our best
guess for any one of them is the sample mean.

X1, … ,Xn Sn = X1 + ⋯ + Xn

E (X1 ∣ Sn)

E (X1 ∣ Sn) = E (X2 ∣ Sn) = ⋯ = E (Xn ∣ Sn)

Sn = E (Sn ∣ Sn) = E(X1 + ⋯ + Xn|Sn) = E (X1 ∣ Sn) + ⋯ + E (Xn ∣ Sn)

nE (X1 ∣ Sn) = Sn ⇒ E (X1 ∣ Sn) = = X̄n

Sn

n

Xj

X1,X2
X1 + X2 = 10 X1

n

13 / 32



Conditional Variance

The conditional variance of  given  is:

There is a very useful relationship between , the unconditional
variance of , and , the conditional variance of  given , that

can often be applied to compute . We have

since  by Adam's Law. Also, 

By adding the above equations, we arrive at the following proposition.

Y X

V ar(Y |X) = E[(Y − E(Y |X))2|X] = E(Y 2|X) − E(Y |X)2

Var(Y )
X Var(Y ∣ X) Y X

Var(Y )

Var(Y ∣ X) = E [Y 2 ∣ X] − (E[Y ∣ X])2

⇒ E[Var(Y ∣ X)] = E [E [Y 2 ∣ X]] − E [(E[Y ∣ X])2]

⇒ E[Var(Y ∣ X)] = E [Y 2] − E [(E[Y ∣ X])2]

E [E [Y 2 ∣ X]] = E [Y 2] E[E[Y ∣ X]] = E[Y ]

⇒ Var(E[Y ∣ X]) = E [(E[Y ∣ X])2] − (E[Y ])2.
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Eve's Law (Law of Total Variance or the Variance Decomposition Formula)
For any r.v.s  and ,

Note the ordering of E's and Var's on the right-hand side spells EVVE.

Imagine a population where each person has a value of  and a value of .
We can divide this population into subpopulations, one for each possible
value of . For example, if  represents age and  represents height, we can
group people based on age.

Then there are two sources contributing to the variation in people's heights in
the overall population:

First, within each age group, people have di�erent heights. The average
amount of variation in height within each age group is the within-group
variation, .
Second, across age groups, the average heights are di�erent. The
variance of average heights across age groups is the between-group
variation, .

Eve's law says that to get the total variance of , we simply add these two
sources of variation.

X Y

Var(Y ) = E(Var(Y ∣ X)) + Var(E(Y ∣ X))

X Y

X X Y

E(Var(Y ∣ X))

Var(E(Y ∣ X))

Y
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Example. Draw a county at random from the United States. Then draw 
people at random from the county. Let  be the number of those people who
have a certain disease. If  denotes the proportion of people in that county
with the disease, then  is also a random variable since it varies from county
to county. We have that .
Thus,  and .

Suppose that the random variable  has a Uniform  distribution. That

is, . Thus, 

and .

We compute the expected value and the variance of .

.

First, 

Next, .

By Eve's Law,

n
X

Q
Q
X ∣ Q = q ∼ Binomial(n, q)

E(X ∣ Q = q) = nq Var(X ∣ Q = q) = nq(1 − q)

Q (0, 1)

Q ∼ Unif(0, 1) E(Q) = = 1/2, Var(Q) = = 1/120+1
2

(1−0)2

12
E(Q2) = (EQ)2 + Var(Q) = (1/2)2 + (1/12) = 1/3

X

E(X) = EE(X ∣ Q) = E(nQ) = nE(Q) = n ⋅ (1/2) = n/2

E Var(X ∣ Q) = E[nQ(1 − Q)] = nE[Q(1 − Q)] = nE(Q − Q2)

= n (EQ − EQ2) = n (1/2 − 1/3) = n/6.

VarE(X ∣ Q) = Var(nQ) = n2 Var(Q) = n2/12

Var(X) = E Var(X ∣ Q) + VarE(X ∣ Q) = Var(X) = (n/6) + (n2/12) .

16 / 32



Probability inequalities

Probability inequalities provide de�nitive limits on the range of possible
values for a given probability.

These mathematical tools are crucial in probability theory, as they allow us to
establish concrete upper and lower boundaries for probabilities we're
investigating.

While these bounds may not always o�er precise estimates, they do
guarantee that the true probability lies within the speci�ed range. For
instance, if we determine that a probability falls between 0.2 and 0.6, we can
be certain that the exact value is somewhere within this interval, even if we
can't pinpoint it more precisely.

This approach gives us a reliable framework for understanding and analyzing
probabilities, even when exact calculations are challenging or impossible.
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Markov's Inequality

For any r.v.  and constant ,

Proof. Let . Then 

That is, we need to show that .

Consider the indicator random variable 

Note that  since if  then the inequality reduces to ,
and if  then . Taking the expectation of both sides, we have

X a > 0

P(|X| ≥ a) ≤
E|X|
a

Y =
|X|
a

E(Y ) = E ( ) = .
|X|
a

E|X|
a

P(Y ≥ 1) ≤ E(Y )

IY≥1 = { 1 if Y ≥ 1
0 if Y < 1

IY≥1 ≤ Y IY≥1 = 0 Y ≥ 0
IY≥1 = 1 Y ≥ 1

EIY≥1 = P(Y ≥ 1) ≤ EY .
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Markov's Inequality intuitive interpretation

Let  be the income of a randomly selected individual from a population.

Taking , Markov's inequality says that

i.e., it is impossible for more than half the population to make at least twice
the average income.

This is clearly true, since if over half the population were earning at least twice
the average income, the average income would be higher!

Similarly,  That is, you can't have more than  of
the population making at least three times the average income, since those
people would already drive the average above what it is.

The following two inequalities, which requires some additional assumptions
about , can be derived from Markov’s inequality with almost no additional
work, can often give us bounds that are much better than Markov’s.

X

a = 2E(X)

P(X ≥ 2E(X)) ≤ = = 1/2,
E(X)
a

E(X)
2E(X)

P(X ≥ 3E(X)) ≤ 1/3. 1/3

X
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Chebyshev's Inequality

Let  have mean  and variance . Then for any ,

Proof. By Markov's inequality,

Substituting  for , for , we obtain an upper bound on the probability
of an r.v. being more than  standard deviations away from its mean:

For example, there can't be more than a  chance of being 2 or more
standard deviations from the mean.

X μ σ2 a > 0

P(|X − μ| ≥ a) ≤
σ2

a2

P(|X − μ| ≥ a) = P ((X − μ)2 ≥ a2) ≤ = .
E(X − μ)2

a2

σ2

a2

cσ a c > 0
c

P(|X − μ| ≥ cσ) ≤ .
1
c2

25%
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Cherno� bound

While Markov's inequality is not sharp in many cases, there are many ways of
strengthening it.

Here is a commonly used argument called Cherno� bound. Let  be any
random variable with �nite moment generating function .

Then for any  and ,

where Markov's inequality was applied on .

Minimizing the right hand-side in  can give rather sharp estimates in many
cases.

X
M

a ∈ R t > 0

P(X ≥ a) = P (etX ≥ eta) ≤ = e−taM(t)
EetX

eta

etX ≥ 0

t
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Example. Let . By the  rule, we know that
 is approximately 0.003; the exact value is .

By Cherno� (after using symmetry of the Normal):

using the MGF of the standard Normal distribution.

The right-hand side is minimized at , as found by setting the derivative
equal to 0:

Plugging in , we have

Markov’s inequality tells us that the tail probability  is at most
0.27, but it would be incorrect to say that  is approximately 0.27
as we’d be o� by a factor of about 100.

Z ∼ N(0, 1) 68 − 95 − 99.7%
P(|Z| > 3) 2 ⋅ Φ(−3)

P(|Z| > 3) = 2P(Z > 3) ≤ 2e−3tE(etZ) = 2e−3t ⋅ et
2/2 = 2et

2/2−3t,

t = 3

(2et
2/2−3t) = 2et

2/2−3t ⋅ (t − 3) = 0 ⇒ t = 3.
d

dt

t = 3

P(|Z| > 3) ≤ 2e−9/2 ≈ 0.022.

P(|Z| > 3)
P(|Z| > 3)
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Law of Large Numbers

Assume we have iid  with �nite mean  and �nite variance .
For all positive integers , let:

be the sample mean of  through . The sample mean is itself a r.v. with
mean  and variance :

Law of Large Numbers (LLN) says that as  grows, the sample mean 
converges to the true mean . There are two versions: strong (SLLN) or weak
(WLLN).

X1,X2,X3, . . . μ σ2

n

X̄n =
X1 + ⋯ + Xn

n

X1 Xn

μ σ2/n

E(X̄n) = E(X1 + ⋯ + Xn) = E(X1) + ⋯ + E(Xn) = μ
1
n

1
n

V ar(X̄n) = V ar(X1 + ⋯ + Xn) = V ar(X1) + ⋯ + V ar(Xn) = σ2/n
1
n2

1
n2

n X̄n

μ
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Strong Law of Large Numbers (SLLN)

The law of large numbers is a fundamental principle that underpins much of
modern simulation, statistical analysis, and scienti�c research. It comes into
play whenever we generate extensive datasets through repeated independent
trials, whether these are conducted via computer simulations or real-world
experiments. The LLN is implicitly invoked each time we use the mean value
from these multiple trials to estimate the theoretical average of a particular
quantity.

The sample mean  converges to the true mean  pointwise, with
probability 1. Recalling that r.v.s are functions from the same space  to ,
this form of convergence says that  for each point ,
except that the convergence is allowed to fail on some set  of
exceptions, as long as . In short:

Can also be written as 

X̄n μ
S R

X̄n(s) → μ s ∈ S

B0
P(B0) = 0

P(X̄n → μ) = 1.

P ( lim
n→∞

X̄n = μ) = 1
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Weak Law of Large Numbers (WLLN)

For all , 

This form of convergence is called convergence in probability.

Proof of WLLN. Fix . By Chebyshev’s inequality, applied to the sample
mean r.v.  (which has mean  and variance ),

As , the right-hand side goes to 0, and so must the left-hand side.

ϵ > 0 P(|X̄n − μ| > ϵ) → 0 as n → ∞.

ϵ > 0
X̄n μ σ2/n

P(|X̄n − μ| > ϵ) ≤ = .
σ2

n

e2

σ2

ne2

n → ∞
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Example. Let  be iid . Interpreting the  as an

indicator of Heads in a string of fair coin tosses,  is the proportion of
Heads after  tosses.

The SSLN says that with probability 1, when the sequence of r.v.s
 crystallizes into a sequence of numbers, then that

sequence of numbers will converge to .
Mathematically, there are bizarre outcomes such as all heads, or HHT
repeated over an over in�nitely, among others, but collectively, they have
zero probability of occurring.
The WLLN says that for any , the probability of  being more than
 away from  can be made as small as we like by letting  grow.

X1,X2, . . . Bern(1/2) Xj

X̄n

n

X̄1, X̄2, X̄3, . . .
1/2

ϵ > 0 X̄n

ϵ 1/2 n
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Central Limit Theorem (CLT)

Assume we have iid  with �nite mean  and �nite variance .

For all positive integers , let:  be the sample mean.

Law of Large Numbers (LLN) tells us that  as . But given
that  is a r.v., what happens with its distribution?
CLT can help us approximate a distribution for .
CLT states that for large , the distribution of  after standardization
(i.e. subtract , the mean of , and divide by , the standard

deviation of ) approaches a standard Normal distribution.

CLT. As ,

This means that the CDF of the r.v  converges to , the CDF of the

standard Normal distribution.

X1,X2,X3, . . . μ σ2

n X̄n = X1+⋯+Xn

n

X̄n → μ n → ∞
X̄n

X̄n

n X̄n

μ X̄n
σ

√n

X̄n

n → ∞

→ N(0, 1)
X̄n − μ

σ√n

X̄n−μ

σ√n
Φ
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Central Limit Theorem

CLT, approximation form. For large , the distribution of  is
approximately . We denote this by .

The CLT says that the sample mean  is approximately Normal, but since
the sum

is just a scaled version of , the CLT also implies  is approximately
Normal.

If the  have mean  and variance  has mean  and variance .

The CLT then states that for large ,

NOTE. We need the mean and variance to be �nite. The Cauchy distribution
has no mean or variance, so it obeys neither the law of large numbers nor the
central limit theorem.

n X̄n

N(μ,σ2/n) X̄n∼̇N(μ,σ2/n)

X̄n

Wn = X1 + ⋯ + Xn = nX̄n

X̄n Wn

Xj μ σ2,Wn nμ nσ2

n

Wn∼̇N (nμ,nσ2)
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Histograms of the distribution of  for di�erent starting distributions of the
 (indicated by the rows) and increasing values of  (indicated by the

columns). Each histogram is based on 10,000 simulated values of .
Regardless of the starting distribution of the , the distribution of 

approaches a Normal distribution as  grows.

X̄n

Xj n

X̄n

Xj X̄n

n
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Binomial convergence to Normal

Let . By Theorem 3.8.8, we can consider  to be a sum of 
i.i.d.  r.v.s. Therefore, for large ,

This is probably the most widely used Normal approximation in statistics.

To account for the discreteness of , we write the probability 
(which would be exactly 0 under the Normal approximation) as

 (so that it becomes an interval of non-zero
width) and apply the Normal approximation to the latter.

This is known as the continuity correction, and it yields the following
approximation for the PMF of  :

Y ∼ Bin(n, p) Y n

Bern(p) n

Y ∼̇N (np,np(1 − p))

Y P(Y = k)

P(k − 1/2 < Y < k + 1/2)

Y

P(Y = k) = P(k − 1/2 < Y < k + 1/2)

≈ Φ( )− Φ( )k + 1/2 − np

√np(1 − p)

k − 1/2 − np

√np(1 − p)
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Example (Coin Tossing). Suppose that a fair coin is tossed 20 times and that all
tosses are independent. What is the probability of obtaining exactly 10 heads?

Solution: Let  denote the total number of heads obtained in the 20 tosses.

According to the central limit theorem, the distribution of  will be
approximately the normal distribution with mean 10 and standard deviation

. If we use the correction for continuity,

Using the binomial PMF, we get

Thus, the normal approximation with the correction for continuity is quite
good.

X

X

[(20)(1/2)(1/2)]1/2 = 2.236

P(X = 10) = P(9.5 ≤ X ≤ 10.5)

= P( ≤ ≤ )
= P(− ≤ Z ≤ )
≈ Φ(0.2236) − Φ(−0.2236) = 0.177

9.5 − 10
2.236

X − 10
2.236

10.5 − 10
2.236

0.5
2.236

0.5
2.236

P(X = 10) = ( )(1/2)10(1/2)20−10 ≈ 0.1762.
20
10
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Additional Practice Problems

1. Choosing Points from Uniform Distributions. Suppose that a point  is
chosen in accordance with the uniform distribution on the interval . Also,
suppose that after the value  has been observed , a point

 is chosen in accordance with a uniform distribution on the interval .
Determine the value of .

2. Judith plays in a total of  chess tournaments in her career.
Suppose that in each tournament she has probability  of winning the
tournament, independently. Let  be the number of tournaments she wins in
her career. Find  and .

X
[0, 1]

X = x (0 < x < 1)
Y [x, 1]

E(Y )

N ∼ Geom(s)
p

T
E(T ) V ar(T )
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