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Covariance

Just as the mean and variance provided single-number summaries of the
distribution of a single r.v., covariance is a single-number summary of the
joint distribution of two r.v.s.

The covariance between r.v.s  and  is:

If the differences  and  have different signs, then
the covariance is negative, and if they have the same signs, then the
covariance is positive.

We can think of the covariance as measure of the tendency of two r.v.s to go
up or down together, relative to their means:

positive covariance between  and  indicates that when  goes up, 
also tends to go up, and
negative covariance indicates that when  goes up,  tends to go down.

X Y

Cov(X,Y ) = E [(X − EX)(Y − EY )] .

(X − E(X)) (Y − E(Y ))

X Y X Y

X Y
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Multiplying  out and using linearity of expectation,

Thus we have an equivalent expression:

The covariance between r.v.s  and  is:

(X − EX)(Y − EY )

Cov(X,Y ) = E [(X − EX)(Y − EY )]

= E [X ⋅ Y − X ⋅ EY − EX ⋅ Y − EX ⋅ EY ]

= E(X ⋅ Y ) − E(X ⋅ EY ) − E(EX ⋅ Y ) + E(EX ⋅ EY )

= E(XY ) − EY ⋅ EX − EX ⋅ EY + EX ⋅ EY

= E(XY ) − EX ⋅ EY .

X Y

Cov(X,Y ) = E(XY ) − E(X)E(Y ).
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If  and  are independent, then they are uncorrelated (i.e. have zero
covariance).

Proof. We'll show this in the case where  and  are continuous, with PDFs
 and . The proof in the discrete case is the same, with PMFs instead of

PDFs and sums instead of integrals.

Since  and  are independent, their joint PDF is the product of the marginal
PDFs. That is, .

By 2D LOTUS,

X Y

X Y
fX fY

X Y
fX,Y (x, y) = fX(x)fY (y)

E(XY ) = ∫
∞

−∞
∫

∞

−∞
xyfX(x)fY (y)dxdy

= ∫ ∞

−∞
yfY (y)(∫ ∞

−∞
xfX(x)dx) dy

= ∫ ∞

−∞
xfX(x)dx∫ ∞

−∞
yfY (y)dy

= E(X)E(Y )

Thus  Cov(X,Y ) = E(XY ) − E(X)E(Y ) = 0.
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Zero covariance doesn't imply independence

The converse of this theorem is false: just because  and  are uncorrelated
does not mean they are independent.

For example, let , and let .

Then  because odd moments of a symmetric

distributions are 0.

Thus  and  are uncorrelated,

But they are certainly not independent:  is a function of , so knowing 
gives us perfect information about  ( one is a function of the other.)

X Y

X ∼ N (0, 1) Y = X2

E(XY ) = E (X3) = 0

X Y

Cov(X,Y ) = E(XY ) − E(X)E(Y ) = 0 − 0 = 0.

Y X X
Y
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Covariance is a measure of linear association

Random variables can be dependent in nonlinear ways and still have zero
covariance, as this example demonstrates. Bottom left:  and  are
independent, hence uncorrelated. Bottom right:  is a deterministic function
of , but  and  are uncorrelated.

X Y
Y

X X Y
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The covariance has the following properties:

(1) 

(2) 

(3)  for any constant .

(4)  for any constant .

(5) 

(6) 

(7) More generally,
.

(8)

(9) 

In the case when  and  are independent r.v.s we have 

and thus .

Cov(X,X) = Var(X)

Cov(X,Y ) = Cov(Y ,X)

Cov(X, c) = 0 c

Cov(aX,Y ) = aCov(X,Y ) a

Cov(X + Y ,Z) = Cov(X,Z) + Cov(Y ,Z)

Cov(X + c,Y ) = Cov(X,Y )

Cov(∑m

i=1 aiXi,∑
n

j=1 bjYj) = ∑m

i=1 ∑
n

j=1 aibj Cov(Xi,Yj)

Cov(X + Y ,Z + W) = Cov(X,Z) + Cov(X,W) + Cov(Y ,Z) + Cov(Y ,W)

Var(X ± Y ) = Var(X) + Var(Y ) ± 2 Cov(X,Y )

X Y Cov(X,Y ) = 0
Var(X ± Y ) = Var(X) + Var(Y )
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Correlation

Since covariance is influenced by the units of measurement for  and  — if
 is measured in centimeters instead of meters, the covariance increases by

a factor of 100 - a more interpretable, unitless measure called correlation is
often preferred.

The correlation between r.v.s  and  is:

Recall  denotes the standard deviation of .

Note that shifting and scaling r.v. has no effect on their correlation:

X Y
X

X Y

Corr(X,Y ) = = .
Cov(X,Y )

√Var(X) Var(Y ))

Cov(X,Y )
SD(X) ⋅ SD(Y )

SD(X) X

Corr(cX,Y ) = = Corr(X,Y ).
Cov(cX,Y )

√c2 Var(X) Var(Y )
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Correlation bounds

Correlation is easy to interpret because it is independent of the units of
measurement and always falls within the range of  to .

For any r.v.s  and ,

Proof. Without loss of generality we can assume  and  have variance 1,
since scaling does not change the correlation.

Let .

Using the fact that variance is nonnegative, along with Property 9 of
covariance, we have

Thus, .

−1 1

X Y

−1 ≤ Corr(X,Y ) ≤ 1

X Y

ρ = Corr(X,Y ) = Cov(X,Y )

Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y ) = 2 + 2ρ ≥ 0 ⇒ ρ ≥ −1
Var(X − Y ) = Var(X) + Var(Y ) − 2 Cov(X,Y ) = 2 − 2ρ ≥ 0 ⇒ ρ ≤ 1

−1 ≤ ρ ≤ 1
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Example. Rolling two dice, let  be the number shown on the first die,  the
one shown on the second die,  the sum of the two numbers.

Clearly,  and  are independent, .

For  and ,

since  (as  and  have the same distribution).

X Y
Z = X + Y

X Y Cov(X,Y ) = 0, Corr(X,Y ) = 0

X Z

Cov(X,Z) = Cov(X,X + Y ) = Cov(X,X) + Cov(X,Y )

= VarX + 0 = VarX

Var(Z) = Var(X + Y ) = VarX + VarY  indep.! 

= VarX + VarX = 2 VarX,

Var(X) = Var(Y ) X Y

Corr(X,Z) =
Cov(X,Z)

SD(X) ⋅ SD(Z)

= = .
VarX

√VarX ⋅ √2 VarX

1

√2
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Multivariate Normal distribution

The Multivariate Normal is a continuous distribution that extends the Normal
distribution to multiple dimensions. Instead of dealing with the complex joint
PDF of the Multivariate Normal, we define it based on its connection to the
standard Normal distribution.

A -dimensional random vector  is said to have a
Multivariate Normal (MVN) distribution if every linear combination of the

 has a Normal distribution. That is, we require:

to have a Normal distribution for any constants . An important
special case is , this distribution is called the Bivariate Normal (BVN).

If  is MVN, then the marginal distribution of  is Normal,
since we can take  to be 1 and all other 0.
It is possible to have Normally distributed r.v.s , such that

 is not Multivariate Normal.

k X = (X1, ⋯ ,Xn)

Xj

t1X1 + ⋯ + tkXk

t1, ⋯ , tk
k = 2

(X1, ⋯ ,Xn) X1
t1

X1, ⋯ ,Xn

(X1, ⋯ ,Xn)
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Parameters of an MVN random vector

A Multivariate Normal distribution is fully specified by knowing the mean of
each component, the variance of each component, and the covariance or
correlation between any two components. Another way to say this is that the
parameters of an MVN random vector  are as follows:

the mean vector , where ;

the covariance matrix, which is the  matrix of covariances between
components, arranged so that the row , column  entry is .

For example, in order to fully specify a Bivariate Normal distribution for
, we need to know five parameters:

the means 
the variances 

the correlation 

To find the Bivariate Normal joint PDF, we first need to talk about
transformations of random variables.

(X1, … ,Xk)

(μ1, . . . ,μk) E(Xj) = μj

k × k
i j Cov(Xi,Xj)

(X,Y )

E(X) = μX,E(Y ) = μY

Var(X) = σ2
X

, Var(Y ) = σ2
Y

Corr(X,Y ) = ρ
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Transformations

After applying a function to a random variable  or random vector , we
would like to find the distribution of the transformed random variable or joint
distribution of the transformed random vector.

Transformations of random variables appear all over the place in statistics.
Kinds of transformations we’ll be looking at: unit conversion, sums, averages,
extreme values.

It is especially important to us to understand transformations because of the
approach we’ve taken to learning about the named distributions. Starting
from a few basic distributions, we have defined other distributions as
transformations of these elementary building blocks, in order to understand
how the named distributions are related to one another.

If we are only looking for the expectation of , LOTUS tells us that the PMF
or PDF of  is enough for calculating . LOTUS also applies to
functions of several r.v.s, as we learned in the previous chapter. If we need
the full distribution of , not just its expectation, our approach depends
on whether  is discrete or continuous.

X X

g(X)
X E(g(X))

g(X)
X
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Discrete Case

In the discrete case, we get the PMF of  by translating the event
 into an equivalent event involving .

To do so, we look for all values  such that ; as long as  equals any
of these  's, the event  will occur. This gives the formula

For a one-to-one  , the situation is particularly simple, because there is only
one value of  such that , namely . Then we can use

to convert between the PMFs of  and .

For example, it is extremely easy to convert between the Geometric and First
Success distributions.

g(X)
g(X) = y X

x g(x) = y X

x g(X) = y

P(g(X) = y) = ∑
x:g(x)=y

P(X = x)

g

x g(x) = y g−1(y)

P(g(X) = y) = P (X = g−1(y))

X g(X)
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Continuous case

In the continuous case, a universal approach is to start from the CDF of ,
and translate the event  into an equivalent event involving .

For general , we may have to think carefully about how to express 
in terms of , and there is no easy formula we can plug into.

But when  is continuous and strictly increasing, the translation is easy:
 is the same as , so

We can then differentiate with respect to  to get the PDF of .

This gives a one-dimensional version of the change of variables formula,
which generalizes to invertible transformations in multiple dimensions.

g(X)
g(X) ≤ y X

g g(X) ≤ y

X

g
g(X) ≤ y X ≤ g−1(y)

Fg(X)(y) = P(g(X) ≤ y) = P (X ≤ g−1(y)) = FX (g−1(y))

y g(X)
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Change of variables in one dimension

Let  be a continuous r.v. with PDF , and let , where  is a
differentiable and strictly increasing (or strictly decreasing) function. Then
the PDF of  is given by:

where  The support of  is all  with  in the support of .

Proof. Let  be strictly increasing. The CDF of  is 

so by the chain rule, the PDF of  is .

The proof for  strictly decreasing is analogous. In that case the PDF ends up

as , which is nonnegative since  if  is strictly decreasing.

Using the absolute value  covers both cases.

X fX Y = g(X) g

Y

fY (y) = fX(x)
∣
∣
∣

∣
∣
∣
,

dx

dy

x = g−1(y). Y g(x) x X

g Y FY (y) = P(Y ≤ y)

= P(g(X) ≤ y) = P (X ≤ g−1(y)) = FX (g−1(y)) = FX(x)

Y fY (y) = fX(x) dx
dy

g

−fX(x) dx
dy

< 0dx
dy

g

∣∣ ∣∣
dx
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Example: Let  be a continuous random variable with PDF  for
 and  otherwise. Now let . Find .

First note that the support of  is .

Also, note that  is a strictly decreasing and differentiable function

on .

We have .

For any ,   and . Then

NOTE. When finding the distribution of , be sure to:

Specify the support of .
Check the assumptions of the change of variables theorem carefully if you
wish to apply it.
Express your final answer for the PDF of  as a function of .

X fX(x) = 4x3

0 < x ≤ 1 0 Y = 1/X fY (y)

Y [1, ∞)

g(x) = 1
x

(0, 1]

g′(x) = −1/x2

y ∈ [1, ∞) x = g−1(y) = 1/y = −dx
dy

1
y2

fY (y) = fX(x)
∣
∣
∣

∣
∣
∣

dx

dy

fY (y) = 4(1/y)3 ∣∣−1/y2∣∣ = 4/y5

Y

Y

Y y
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Example (Log-Normal PDF). Let . In Chapter 6 we
named the distribution of  the Log-Normal. We can use the change of
variables formula to find the PDF of , since  is strictly increasing.

To determine the support of , we just observe that as  ranges from  to
 ranges from 0 to .

Let , so  and . Then

We can get the same result by working from the definition of the CDF,
translating the event  into an equivalent event involving . For ,

so the PDF is again

X ∼ N (0, 1),Y = eX

Y
Y g(x) = ex

Y x −∞
∞, ex ∞

y = ex x = log y dy/dx = ex

fY (y) = fX(x)
∣
∣
∣

∣
∣
∣

= φ(x) = φ(log y) , y > 0
dx

dy

1
ex

1
y

Y ≤ y X y > 0

FY (y) = P(Y ≤ y) = P (eX ≤ y) = P(X ≤ log y) = Φ(log y)

fY (y) = Φ(log y) = φ(log y) , y > 0
d

dy

1
y
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Example (Chi-Square PDF). Let .

The distribution of  is an example of a Chi-Square distribution.

To find the PDF of , we can no longer apply the change of variables formula
because  is not strictly increasing (or decreasing). Instead we start
from the CDF.

Note the event  is equivalent to the event .

Then

Thus

X ∼ N (0, 1),Y = X2

Y

Y
g(x) = x2

X2 ≤ y −√y ≤ X ≤ √y

FY (y) = P (X2 ≤ y) = P(−√y ≤ X ≤ √y)

= Φ(√y) − Φ(−√y) = 2Φ(√y) − 1

fY (y) = 2φ(√y) ⋅ y−1/2 = φ(√y)y−1/2, y > 0
1
2
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-dimensional Change of variables

The change of variables formula generalizes to  dimensions, where it tells us
how to use the joint PDF of a random vector  to get the joint PDF of the
transformed random vector .

The formula is analogous to the one-dimensional version, but it involves a
multivariate generalization of the derivative called a Jacobian matrix.

See sections A.6 and A.7 of the math appendix for more about Jacobians.

NOTE. This is only for continuous r.v.s. For discrete r.v.s we can transform
using the PMF directly. For example, let  be a positive r.v. and ,
then: .

n

n
X

Y = g(X)

X Y = X3

P(Y = y) = P(X = y1/3)
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Change of variables. Let  be a continuous random
vector with joint . Let  be an invertible function, where

 and  are open subsets of  contains the support of , and 
is the range of .

Let , and mirror this by letting . Since  is invertible, we
also have  and  Suppose that all the partial

derivatives  exist and are continuous, so we can form the Jacobian

matrix

Also assume that the determinant of this Jacobian matrix is never 0 . Then
the joint PDF of  is

X = (X1, … ,Xn)
PDFfX g : A0 → B0

A0 B0 Rn,A0 X B0
g

Y = g(X) y = g(x) g

X = g−1(Y) x = g−1(y)
∂xi
∂yj

=

⎛⎜⎜⎜⎜⎝

⋯

⋮ ⋮

⋯

⎞⎟⎟⎟⎟⎠
∂x
∂y

∂x1

∂y1

∂x1

∂y2

∂x1

∂yn

∂xn
∂y1

∂xn
∂y2

∂xn
∂yn

Y

fY(y) = fX (g−1(y)) ⋅ ∣∣∣ det ∣∣∣,  for y ∈ B0.
∂x
∂y
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Example (Bivariate Normal joint PDF). Let  be BVN with 
marginals and . Assume that  since otherwise
the distribution is degenerate (with  and  perfectly correlated).

We can construct  as

with  and  i.i.d. .

We also need the inverse transformation. Solving  for , we have
. Plugging this into  and solving for , we have 

and .

The Jacobian is

which has determinant .

(Z,W) N (0, 1)
Corr(Z,W) = ρ −1 < ρ < 1

Z W

(Z,W)

Z = X

W = ρX + τY

τ = √1 − ρ2 X,Y N (0, 1)

Z = X X
X = Z W = ρX + τY Y X = Z

Y = − Z + W
ρ

τ
1
τ

= ( ) = ( 1 0

−
)∂(x, y)

∂(z,w)

∂x
∂z

∂x
∂w

∂y
∂z

∂y
∂w

ρ

τ
1
τ

1/τ
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So by the change of variables formula,

In the last step we multiplied things out and used the fact that .

fZ,W (z,w) = fX,Y (x, y) ⋅
∣
∣
∣
det

∣
∣
∣
,

= exp(− (x2 + y2)) ⋅

= exp(− (z2 + (− z + w)2))
= exp(− (z2 + w2 − 2ρzw)),  for all real z,w

∂(x, y)
∂(z,w)

1
2π

1
2

1
τ

1
2πτ

1
2

ρ

τ

1
τ

1
2πτ

1
2τ 2

ρ2 + τ 2 = 1
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Convolutions

A convolution is a sum of independent random variables. The objective in this
case is to find the distribution of , where  and  are
independent r.v.s whose distributions are known.

We can solve this problems using MGFs, but what happens if a distribution we
are working with doesn't have a defined MGF?

Let  and  be independent r.v.s and  be their sum.
If  and  are discrete, then the PMF of  is:

If  and  are continuous, then the PDF of  is:

NOTE that in both cases we are using LOTP.

T = X + Y X Y

X Y T = X + Y
X Y T

P(T = t) = ∑
x

P(Y = t − x)P(X = x) = ∑
y

P(X = t − y)P(Y = y).

X Y T

fT (t) = ∫
∞

−∞
fY (t − x)fX(x)dx = ∫

∞

−∞
fX(t − y)fY (y)dy.
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Example (Poisson convolution)Let  and  be
independent. Then

from where we conclude .

Example (Binomial convolution) Let  and
 be independent. Then  :

X ∼ Pois(λ) Y ∼ Pois(μ)

pX+Y (k) =
∞

∑
i=−∞

pX(k − i) ⋅ pY (i) =
k

∑
i=0

e−λ ⋅ e−μ

= e−(λ+μ)
k

∑
i=0

( ) ⋅ λk−i ⋅ μi = e−(λ+μ)

λk−i

(k − i)!
μi

i!

1
k!

k

i

(λ + μ)k

k!

X + Y ∼ Pois(λ + μ)

X ∼ Binom(n, p)
Y ∼ Binom(m, p) X + Y ∼ Binom(n + m, p)

pX+Y (k) =
k

∑
i=0

( )pk−i(1 − p)n−k+i ⋅ ( )pi(1 − p)m−i

= pk ⋅ (1 − p)m+n−k

k

∑
i=0

( ) ⋅ ( )


( )

= ( )pk ⋅ (1 − p)m+n−k.

n

k − i

m

i

n

k − i

m

i

n+m
k

n + m

k
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Example (Exponential convolution)

Let . Find the distribution of .

This is known as the  distribution. We will introduce the
Gamma distribution later.

Solution: For , the convolution formula gives

where we restricted the integral to be from 0 to  since we need 
and  for the PDFs inside the integral to be nonzero.

Simplifying, we have

X,Y  i.i.d. ∼ Expo(λ) T = X + Y

Gamma(2,λ)

t > 0

fT (t) = ∫ ∞

−∞
fY (t − x)fX(x)dx = ∫ t

0
λe−λ(t−x)λe−λxdx

t t − x > 0
x > 0

fT (t) = λ2 ∫
t

0
e−λtdx = λ2e−λt ∫

t

0
1dx = λ2e−λtx

∣∣∣

t

0
= λ2e−λtt,  for t > 0
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Beta Distribution

Beta distribution is a continuous distribution on the interval . It is a
generalization of the  distribution, allowing the PDF to be non-
constant on .

An r.v.  is said to have the Beta Distribution with parameters  and ,
where , and , if its PDF is:

for , where the constant  is chosen to make the PDF
integrate 1. We write this as .

By definition then:  (beta integral)

Beta Wiki

(0, 1)
Unif(0, 1)

(0, 1)

X a b
a > 0 b > 0

f(x) = xa−1(1 − x)(b−1)1
β(a, b)

0 < x < 1 β(a, b)
X ∼ Beta(a, b)

β(a, b) = ∫ 1
0 xa−1(1 − x)b−1dx
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Taking , the Beta(1,1) PDF is constant on , so the Beta(1,1)
and Unif(0,1) distributions are the same.
If  and , the PDF is U-shaped and opens upward. If  and

, the PDF opens down.
If , the PDF is symmetric about . If , the PDF favors values
larger than , if  the PDF favors values smaller than .

a = b = 1 (0, 1)

a < 1 b < 1 a > 1
b > 1
a = b 1/2 a > b

1/2 a < b 1/2
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Gamma Distribution

While the Exponential r.v. represents the waiting time for the first success
under conditions of memorylessness, a Gamma r.v. represents the total
waiting time for multiple successes.

An r.v.  is said to have the Gamma Distribution with parameters  and ,
where , and , if its PDF is:

for . We write this as .

Note that if  we have an .

Gamma Dist Wiki

Y a λ
a > 0 λ > 0

f(y) = ya−1e−λyλa

Γ(a)

y > 0 X ∼ Gamma(a,λ)

a = 1 Expo(λ)
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Gamma Function

What is ? Is the Gamma function != Gamma Distribution.

The Gamma function  is defined by:

for real numbers .

Important properties:

 for .
 if n is a positive integer

 for 

Γ(a)

Γ

Γ(a) = ∫ ∞

0
xa−1e−xdx

a > 0

Γ(a + 1) = aΓ(a) a > 0
Γ(n) = (n − 1)!
Γ(1/2) = √π

Γ(a) = ∫ ∞
0 xa−1e−xdx

∫ ∞
0 xa−1e−λxdx =

Γ(a)
λa

λ > 0.
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Additional Practice Problems

1. Let  and  be i.i.d. . Compute the covariance of  and
.

2. Let , and  be independent. Find the PDF
of , . How is  distributed?

2. Use a convolution integral to show that if  and

 are independent, then 

(to simplify the calculation, we are assuming that the variances are equal). You
can use a standardization (location-scale) idea to reduce to the standard
Normal case before setting up the integral.

Hint: Complete the square.

X Y Unif(0, 1) X + Y

X − Y

X ∼ Exp(λ) Y ∼ Gamma(2,λ)
X + Y fX+Y (t) X + Y

X ∼ N (μ1,σ2)
Y ∼ N (μ2,σ2) T = X + Y ∼ N (μ1 + μ2, 2σ2)
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