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Summaries of a distribution: Median and Mode

We have talked about the expected value  and the variance  of
a r.v. , which are important summaries of the average value of  and how
spread out its distribution is. In addition to the mean, other commonly used
summaries include the median and the mode:

We say that  is a median of a random variable  if

(The simplest way this can happen is if CDF of  hits  exactly at , but
we know that some CDFs have jumps.)

For a discrete r.v. , we say that  is a mode of  if it maximizes the PMF:

For a continuous r.v.  with PDF , we say that  is a mode if it maximizes
the PDF:  for all .

E(X) Var(X)
X X

m X

P(X ≤ m) ≥ 1/2 and P(X ≥ m) ≥ 1/2.

X 1/2 m

X c X

P(X = c) ≥ P(X = x) for all x.

X f c
f(c) ≥ f(x) x

Note that a distribution can have multiple medians and multiple modes. 2 / 29



For  we have:

Mean: 
Median: 0
The CDF of  satis�es

 for all . In
particular, ,
which implies .
Mode: 0
The PDF of  is maximized when

.

Intuitively,

the median is a value  such that half the mass of the distribution falls
on either side of  (or as close to half as possible, for discrete r.v.s), and
the mode is a value that has the greatest mass or density out of all values
in the support of .
If the CDF  is a continuous, strictly increasing function, then 
is the median (and is unique).

Example (Standard normal distribution):

m
m

X
F F −1(1/2)

Z ∼ N(0, 1)

E(Z) = 0

Z
Φ(z) = 1 − Φ(−z) z

Φ(0) = 1 − Φ(0)
Φ(0) = 1/2

Z
x = 0
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Example (The Median of a Discrete Distribution).

Suppose that  has the following discrete distribution:

The value 3 is a median of this distribution because , which
is greater than , and , which is also greater than .
Furthermore, 3 is the unique median of this distribution.

Example (A Discrete Distribution for Which the Median Is Not Unique)

Suppose that  has the following discrete distribution:

Here, , and . Therefore, every value of 
in the closed interval  will be a median of this distribution. The
most popular choice of median of this distribution would be the midpoint 2.5 .

X

P(X = 1) = 0.1, P(X = 2) = 0.2

P(X = 3) = 0.3, P(X = 4) = 0.4

P(X ≤ 3) = 0.6
1/2 P(X ≥ 3) = 0.7 1/2

X

P(X = 1) = 0.1, P(X = 2) = 0.4
P(X = 3) = 0.3, P(X = 4) = 0.2

P(X ≤ 2) = 1/2 P(X ≥ 3) = 1/2 m

2 ≤ m ≤ 3
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Example (The Median of a Continuous Distribution). Suppose that  has a
continuous distribution for which the PDF is as follows:

The unique median of this distribution will be the number  such that

This number is .

Example (A Continuous Distribution for Which the Median Is Not Unique)
Suppose that  has a continuous distribution for which the PDF is as follows:

Here, for every value of  in the closed interval ,
. Therefore, every value of  in the interval

 is a median of this distribution.

X

f(x) = { 4x3  for 0 < x < 1
0  otherwise 

m

∫
m

0
4x3dx = ∫

1

m

4x3dx = x4∣∣∣

1

m

= 1 − m4 =
1
2

m = 1/21/4

X

f(x) =
⎧⎨⎩

1/2  for 0 ≤ x ≤ 1
1  for 2.5 ≤ x ≤ 3
0  otherwise 

m 1 ≤ m ≤ 2.5
P(X ≤ m) = P(X ≥ m) = 1/2 m

1 ≤ m ≤ 2.5
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Moments

Let  be an r.v. with mean  and variance . For any positive integer :

the th moment of  is 
the th central moment of  is 

the th standardized moment of  is 

Throughout the previous sentence, "if it exists" is left implicit.

In particular, the mean is the �rst moment and the variance is the second
central moment.

The term "moment" is borrowed from physics. The �rst moment (mean) can
be viewed as center of mass, and the variance can be called moment of
inertia about the center of mass.

X μ σ2 n

n X E(Xn)
n X E((X − μ)n)

n X E(( )n).X−μ

σ
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Skewness

The skewness of an r.v.  with mean  and variance  is the third
standardized moment of :

Why are we standardizing? to make sure that the skewness is not dependent
on the location or scale of , i.e. the units are not going to be important.

Skewness is a measure of asymmetry:

Positive skewness: indicate having a long right tail relative to the left tail.
Negative skewness: indicate having a long left tail relative to the right tail.

X μ σ2

X

Skew(X) = E(( )3).
X − μ

σ

X
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Symmetry

We say that an r.v.  has a symmetric distribution about  if

The number  in the above de�nition must be  if the mean exists, since
 implies .

For  continuous, symmetry means that the PDF of  to the left of  is the
mirror image of the PDF of  to the right of . The same holds for the PMF if

 is discrete. For example,  is symmetric when 

X μ

X − μ has the same distribution as μ − X.

μ E(X)
E(X) − μ = E(X − μ) = E(μ − X) = μ − E(X) E(X) = μ

X X μ
X μ

X X ∼ Bin(n, p) p = 1/2.
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Odd central moments of a symmetric distribution

Let  be symmetric about its mean . Then for any odd number , the 
th central moment  is 0 if it exists.

Proof.

Since  has the same distribution as , they have the same  th
moment (if it exists):

Let .

Then .

So the above equation just says , which implies .

X μ m m
E(X − μ)m

X − μ μ − X m

E(X − μ)m = E(μ − X)m

Y = (X − μ)m

(μ − X)m = (−(X − μ))m = (−1)mY = −Y

E(Y ) = −E(Y ) E(Y ) = 0
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Moment generating functions (MGF)

A moment generating function, as its name suggests, is a generating function
that encodes the moments of a distribution.

The moment generating function (MGF) of an r.v  is

if this is �nite on some open interval  containing 0. Otherwise we
say the MGF of  does not exist.

Note:  for any valid MGF ; whenever you compute an MGF, plug
in 0 and see if you get 1, as a quick check!

Why do we care about moment generating functions (MGF)?
The next theorem gives the reason why the MGF is important: the MGF
encodes the moments of an r.v.

X

M(t) = E(etX)

(−a, a)
X

M(0) = 1 M
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Moments via derivatives of the MGF. Given the MGF of , we can get the 
th moment of  by evaluating the th derivative of the MGF at 0:

Proof. Note that the Taylor expansion of  about 0 is

while on the other hand, we also have

Note we are allowed to interchange the expectation and the in�nite sum
because certain technical conditions are satis�ed (this is where we invoke the
condition that  is �nite in an interval around 0 ).

Matching the coe�cients of the two expansions, we get .

X n
X n

E(Xn) = M (n)(0).

M(t)

M(t) =
∞

∑
n=0

M (n)(0)
tn

n!

M(t) = E (etX) = E( ∞

∑
n=0

Xn ) =
∞

∑
n=0

E (Xn)
tn

n!
tn

n!

E (etX)

E (Xn) = M (n)(0)
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MGF of an r.v. determines its distribution, like the CDF and PMF/PDF.

MGFs determines the distribution. If two r.v.s have the same MGF, they
must have the same distribution. In fact, if there is even a tiny interval

 containing 0 on which the MGFs are equal, then the r.v.s must have
the same distribution.

MGF make it easy to �nd the distribution of a sum of independent r.v.s. If
 and  are independent, then 

MGFs of a sum of independent r.v.s. If  and  are independent, then the
MGF of  is the product of the individual MGFs:

MGF of location-scale transformation. If  has MGF , then the MGF of
 is:

(−a, a)

X Y E(et(X+Y )) = E(etX)E(etY ).

X Y
X + Y

MX+Y (t) = MX(t)MY (t).

X M(t)
a + bX

E(et(a+bX)) = eatE(ebtX)) = eatM(bt)
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Geometric MGF. For ,

since  is a geometric series with ratio . It converges if .

Uniform MGF. For , for 

Exponential MGF. First , we �nd the MGF of . For ,

Thus the MGF of  is:

X ∼ Geom(p)

M(t) = E(eXt) =
∞

∑
k=0

etkqkp = p

∞

∑
k=0

(etq)k =
p

1 − etq

∑∞
k=0(etq)k etq etq < 1

U ∼ Unif(a, b) t ≠ 0

M(t) = E(eUt) = ∫ b

a
etu du = ⋅ ∣∣∣

u=b

u=a

= .1
b−a

1
b−a

etu

t
etb−eta

t(b−a)

X ∼ Expo(1) t < 1

MX(t) = E(etX) = ∫ ∞

0
etxe−xdx = ∫ ∞

0
e−x(1−t)dx

= − e−x(1−t)∣∣∣

∞

x=0
− (0 − 1) = .

1
1 − t

1
1 − t

1
1 − t

Y = X/λ ∼ Expo(λ)

MY (t) = E(etX/λ) = MX(t/λ) = = .
1

1 − t/λ
λ

λ − t 13 / 29



Joint CDF

The joint CDF of r.v.s  and  is the function  given by:

The joint CDF of  r.v.s is de�ned analogously.

If  and  are independent, then .

Discrete r.v.s: CDF doesn't behave nicely, for that, with discrete r.v.s we
usually work with the joint PMF.

Continuous r.v.s: joint CDF function have to be di�erentiable with respect
to  and . The partial derivative with respect to  and  is called the joint
PDF.

X Y FX,Y

FX,Y (x, y) = P(X ≤ x,Y ≤ y)

n

X Y FXY (x, y) = FX(x)FY (y)

x y x y
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Properties:

Nonnegative

It can be used to �nd the
probability of the event

 for any set  of
points in the support of 

Joint PMF

The joint PMF of discrete r.v.s  and  is the function  given by:

The joint PMf of n discrete r.v.s is de�ned analogously.

If X and Y are independent, then .

X Y pX,Y

pX,Y (x, y) = P(X = x,Y = y)

∑x ∑y P(X = x,Y = y) = 1

(X,Y ) ∈ A A

(X,Y ).

P((X,Y ) ∈ A) =∑
x∈A

∑
y∈A

P(Y = x,Y = y)

pXY (x, y) = pX(x)pY (y) 15 / 29



Marginal and Conditional PMFs

From the joint distribution of  and , we can get the distribution of  alone
by summing over the possible values of :

For discrete r.v.s  and , the marginal PMF of  is:

The marginal PMF is just the PMF for a single r.v.s, and hence have the same
properties as any other PMF.

For discrete r.v.s  and , the conditional PMF of  given  is:

This is viewed as a function of  for �xed .

X Y X
Y

X Y X

P(X = x) =∑
y

P(X = x,Y = y)

X Y Y X = x

P(Y = y|X = x) =
P(X = x,Y = y)

P(X = x)

y x
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Example. Suppose that  and  have a discrete joint distribution for which
the joint PMF is de�ned as follows:

a. Determine the marginal PMF's of  and .
b. Are  and  independent?

Solution.

(a) For , we have

Similarly, for , we have

(b)  and  are not independent because it is not true that
 for all possible values of  and .

X Y

pX,Y (x, y) = { (x + y)  for x = 0, 1, 2 and y = 0, 1, 2, 3
0  otherwise. 

1
30

X Y
X Y

x = 0, 1, 2

pX(x) = P(X = x) =
3

∑
y=0

f(x, y) = (4x + 6) = (2x + 3)
1
30

1
15

y = 0, 1, 2, 3

pY (y) = P(Y = y) =
2

∑
x=0

f(x, y) = (3 + 3y) = (1 + y)
1
30

1
10

X Y
pXY (x, y) = pX(x)pY (y) x y 17 / 29



Conditional PMF, Bayes' rule and LOTP

We can also relate the conditional distribution of  given  to that of 
given , using Bayes' rule:

And using LOTP, we have another way of getting the marginal PMF:

the marginal PMF of  is a weighted average of the conditional PMFs
, where the weights are the probabilities .

Y X = x X
Y = y

P(Y = y ∣ X = x) =
P(X = x ∣ Y = y)P(Y = y)

P(X = x)

X
P(X = x ∣ Y = y) P(Y = y)

P(X = x) =∑
y

P(X = x ∣ Y = y)P(Y = y)
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Joint PDF

If  and  are continuous with joint CDF  their joint PDF is the

derivative of the joint CDF with respect to  and :

The joint PMf of n discrete r.v.s is de�ned analogously.

 and 

The joint PDF of two r.v.s is the function we integrate to get the
probability of a two-dimensional region :

For example, 

If  and  are independent, then .

X Y FX,Y

x y

fX,Y (x, y) = FX,Y (x, y)
∂2

∂x∂y

fX,Y (x, y) ≥ 0 ∫ ∞
−∞ ∫ ∞

−∞ fX,Y (x, y)dxdy = 1

A ⊆ R2

P((X,Y ) ∈ A) =∬
A

fX,Y (x, y)

P(X < 3, 1 < Y < 4) = ∫ 4
1 ∫ 3

−∞ fX,Y (x, y)dxdy

X Y fXY (x, y) = fX(x)fY (y)
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Marginal PDF

For continuous r.v.s  and  with joint PDF , the marginal PDF of  is:

This is the PDF of , viewing  individually rather than jointly with .

Similarly, the marginal PDF of  is: 

Marginalization works analogously with any number of variables. Integrate
over the unwanted variables to get the joint PDF of the wanted variables.

For example, if we have the joint PDF of  but want the joint PDF of
, we just have to integrate over all possible values of  and  :

X Y fX,Y X

fX(x) = ∫ ∞

−∞
fX,Y (x, y)dy.

X X Y

Y fY (y) = ∫ ∞
−∞ fX,Y (x, y)dx.

X,Y ,Z,W
X,W Y Z

fX,W (x,w) = ∫
∞

−∞
∫

∞

−∞
fX,Y ,Z,W (x, y, z,w)dydz
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Take a vertical slice of the joint PDF
corresponding to the observed value
of . Since the total area under this
slice is , we then divide by

 to ensure that the conditional

PDF will have an area of 1.

Conditional PDF

For continuous r.v.s  and  with joint PDF , the conditional PDF of 

given  is:

for all x with  and  for all  with  This

is viewed as a function of  for �xed .

X Y fX,Y Y

X = x

fY |X(y|x) = ,
fX,Y (x, y)

fX(x)

fX(x) > 0 fY |X(y|x) = 0 x fX(x) = 0.
y x

X
fX(x)

fX(x)
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(a) The joint PDF of  and  is positive
inside the triangle  shown in the
�gure. We can see the possible values
of  lie between 0 and 2.
Hence, for ,

Example. Suppose that the joint PDF of two random variables  and  is as
follows:

Determine: (a) the conditional PDF of  for every given value of , and
(b) .

Solution.

X Y

fX,Y (x, y) = { (4 − 2x − y)  for x > 0, y > 0 and 2x + y < 4

0 otherwise 

3
16

Y X
P(Y ≥ 2 ∣ X = 0.5)

X Y
S

X
0 < x < 2

fX(x) = ∫
4−2x

0
fX,Y (x, y)dy = ∫

4−2x

0
(4 − 2x − y)dy

3
16

22 / 29



It follows that for  and ,

(b) When  and  it follows from part (a) that

Therefore,

⇒ fX(x) = ∫
4−2x

0
(4 − 2x − y)dy = (4y − 2xy − y2)∣∣∣

y=4−2x

0

3
16

3
16

1
2

= (4(4 − 2x) − 2x(4 − 2x) − (4 − 2x)2) = (x − 2)23
16

1
2

3
8

0 < x < 2 0 < y < 4 − 2x

fY |X(y|x) = = =
fX,Y (x, y)

fX(x)

(4 − 2x − y)3
16

(x − 2)23
8

4 − 2x − y

2(x − 2)2

X = 0.5 0 < y < 4 − 2x = 3

fY |X(y|0.5) = { = (3 − y)  for 0 < y < 3

0  otherwise 

4−2(0.5)−y

2(0.5−2)2
2
9

P(Y ≥ 2 ∣∣∣X = ) = ∫
3

2
fY |X(y|0.5)dy = ∫

3

2
(3 − y)dy = .

1
2

2
9

1
9
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Continuous form of Bayes' rule and LOTP

For continuous r.v.s  and , we have the following continuous form of
Bayes' rule:

And we have the following continuous form of the law of total probability:

Proof. By de�nition of conditional PDFs, we have

The cont. version of Bayes' rule follows immediately from dividing by .
The cont. version of LOTP follows from integrating with respect to  :

X Y

fY ∣X(y ∣ x) = ,  for fX(x) > 0
fX∣Y (x ∣ y)fY (y)

fX(x)

fX(x) = ∫ ∞

−∞
fX∣Y (x ∣ y)fY (y)dy

fY ∣X(y ∣ x)fX(x) = fX,Y (x, y) = fX∣Y (x ∣ y)fY (y)

fX(x)
y

fX(x) = ∫
∞

−∞
fX,Y (x, y)dy = ∫

∞

−∞
fX∣Y (x ∣ y)fY (y)dy
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Other versions of Bayes' rule and LOTP

We now have versions of Bayes' rule and LOTP for two discrete r.v.s and for
two continuous r.v.s.

There are also versions when we have one discrete r.v. and one continuous
r.v. After understanding the discrete versions, it is easy to remember and use
the other versions since they are analogous, replacing probabilities by PDFs
when appropriate.

For example, for  discrete and  continuous, we have the following version
of LOTP:

Taking  to be the indicator r.v. of an event  and , we have an
expression for a general probability  based on conditioning on a
continuous r.v.  :

X Y

P(X = x) = ∫ ∞

−∞
P(X = x ∣ Y = y)fY (y)dy

X A x = 1
P(A)

Y

P(A) = ∫ ∞

−∞
P(A ∣ Y = y)fY (y)dy
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Four versions of Bayes' rule

Here are the four versions of Bayes' rule, summarized in a table.

Four versions of LOTP

Here are the four versions of LOTP. The top row gives expressions for
, while the bottom row gives expressions for .

Y discrete Y continuous

X discrete P(Y = y|X = x) = fY (y|X = x) =

X continuous P(Y = y|X = x) = fY |X(y|x) =

P(X=x|Y=y)P(Y=y)

P(X=x)

P(X=x|Y=y)fY (y)

P(X=x)

fX(x|Y=y)P(Y=y)

fX(x)

fX|Y (x|y)fY (y)

fX(x)

P(X = x) fX(x)

Y discrete Y continuous
X discrete ∑y P(X = x|Y = y)P(Y = y) ∫ ∞

−∞ P(X = x|Y = y)fY (y)dy

X continuous ∑y fX(x|Y = y)P(Y = y) ∫ ∞
−∞ fX|Y (x|y)fY (y)dy
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2D Lotus

Like its 1D counterpart, 2D LOTUS saves us from having to �nd the
distribution of  in order to calculate its expectation. Instead, having
the joint PMF or joint PDF of X and Y is enough.

Let g be a function from  to . If  and  are discrete, then:

If  and  are continuous with joint PDF  then:

g(X,Y )

R2 R X Y

E(g(X,Y )) =∑
x

∑
y

g(x, y)P(X = x,Y = y).

X Y fX,Y

E(g(X,Y )) = ∫
∞

−∞
∫

∞

−∞
g(x, y)fX,Y (x, y)dxdy.
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Additional Practice Problems

1. Consider two r.v.s  and  with joint PMF given by:

X = 0 X = 1
Y = 0 1/6 1/8
Y = 1 1/4 1/6
Y = 2 1/8 1/6

a. Find .
b. Find the marginal PMF of , .
c. Find .
d. Are  and  independent?
2. Suppose that  and  have a continuous joint distribution for which the
joint PDF is de�ned as follows:

Determine (a) the value of the constant ;
(b)  2); (c) ; (d) .
3. Let  and  be iid Unif(0,1) r.v.s. Find .

X Y

P(X = 0,Y ≤ 1)
Y P(Y = y)

P(Y = 1|X = 0)
X Y

X Y

f(x, y) = { cy2  for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1
0  otherwise 

c
P(X + Y > P(Y < 1/2) P(X ≤ 1)

X Y E(|X − Y |) 29 / 29


