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Continuous Random Variables

So far we studied r.v.s that take a discrete (countable) set of values. Many r.v.s
take take on any real value in an interval (possibly of in�nite length, such as

 or the entire real line).

For example,

Waiting for a bus. The time (in minutes) which elapses between arriving at
a bus stop and a bus arriving can be modelled as a r.v.  taking values in

.

Share price. The values of one share of a speci�c stock at some given
future time can be modelled as a r.v.  taking values in .

Weight. The weight of a randomly chosen individual can be modelled as a
r.v.  taking values in .

Temperature. The temperature in Celsius at a given time can be modelled
as a r.v.  taking values in 

(0,∞)

X
[0,∞)

X [0,∞)

X [0,∞)

X [−273.15,∞).
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Probability density function (PDF)

Recall that the cumulative distribution function (CDF) of an r.v.  is the
function  given by 

An random variable has a continuous distribution if its cumulative
distribution function (CDF) is di�erentiable. We also allow there to be
endpoints (or �nitely many points) where the CDF is continuous but not
di�erentiable, as long as the CDF is di�erentiable everywhere else.
A continuous r.v. is a random variable with a continuous distribution.

Instead of a PMF, in this case we have a PDF:

For a continuous r.v.  with CDF , the probability density function (PDF)
of  is the derivative  of the CDF, given by

The support of , and of its distribution, is the set of all  where .

X
F F(x) = P(X ≤ x).

X F
X f

f(x) = F ′(x).

X x f(x) > 0
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CDF and PDF

The PDF is analogous to the PMF in many ways, but there is a key di�erence:
for a PDF , the quantity  is not a probability, and in fact it is possible to
have  for some values of . To obtain a probability, we need to
integrate the PDF. The fundamental theorem of calculus tells us how to get
from the PDF back to the CDF.

PDF to CDF. Let  be a continuous r.v. with PDF . Then the CDF of  is
given by:

The above result is analogous to how we obtained the value of a discrete CDF
at  by summing the PMF over all values less than or equal to ; here we
integrate the PDF over all values up to , so the CDF is the accumulated area
under the PDF.

f f(x)
f(x) > 1 x

X f X

F(x) = ∫
x

−∞
f(t)dt.

x x
x
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PDF, CDF and probabilities

We can freely convert between the PDF and the CDF using the inverse
operations of integration and di�erentiation. That means both the PDF and
CDF carry complete information about the distribution of a continuous r.v.

For a continuous r.v. , the probability of any single value is zero; i.e. for any
 we have . For example if you model a waiting time by a

random variable , then the probability of waiting 5,123123123123... or
exactly 5.0 minutes will be zero!

That means, we can include or exclude the endpoints as we wish without
altering the probability, since the endpoints have probability 0:

To get a desired probability, integrate the PDF over the appropriate range:

X
x ∈ R P(X = x) = 0

X

P(a < X < b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a ≤ X ≤ b)

P(a < X ≤ b) = F(b) − F(a) = ∫ b

a
f(x)dx.
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PDF properties

Valid PDFs. The PDF  of a continuous r.v. must satisfy the following two
criteria:

Nonnegative: 

Integrates to 1: 

Example. Let  be a continuous random variable with the following PDF

where  is a positive constant.

(a) Find 

(b) Find the CDF of X, 

(c) Find 

f

f(x) ≥ 0
∫ ∞−∞ f(x)dx = 1

X

fX(x) = { ce−x x ≥ 0
0 otherwise

c

c

FX(x)

P(1 < X < 3)
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Solution. (a) To �nd , we can use Property 2 above, in particular

(b) To �nd the CDF of X, we use , so for , we

obtain . For , we have

(c) We can �nd  using either the CDF or the PDF. If we use the
CDF, we have

Equivalently, we can use the PDF. We have

c

1 = ∫
∞

−∞
fX(x)du = ∫

∞

0
ce−xdu = c[− e−x]∞

0
= c(− lim

x→∞
e−x + e0) = c

⇒ c = 1

FX(x) = ∫ x

−∞ fX(t)dt x < 0
FX(x) = 0 x ≥ 0

FX(x) = ∫ x

0
e−tdt = 1 − e−x ⇒ FX(x) = { 1 − e−x x ≥ 0

0 otherwise

P(1 < X < 3)

P(1 < X < 3) = FX(3) − FX(1) = (1 − e−3)− (1 − e−1) = e−1 − e−3.

P(1 < X < 3) = ∫
3

1
fX(t)dt = ∫

3

1
e−tdt = e−1 − e−3 ≈ 0.3181.
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We can use R to make a plot of the PDF  and CDF  from the previous
example:

x  <- seq(0,10,0.01)
fx <- exp(-x) # this calculates the PDF
plot(x, fx, ylim=c(0,1), type="l", main = "Probability density function", 
     xlab="x", ylab="f(x)")
abline(v=c(1,3), col="red")

Fx <- 1-exp(-x) # this calculates the CDF
plot(x, Fx, type="s", main = "CDF", xlab="x", ylab="F(x)", ylim=c(0,1))
abline(v=c(1,3), col="red")

f F
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Expectation of a continuous r.v.

The expected value (also called expectation or mean) of a continuous r.v. 
with PDF  is:

The integral is taken over the entire real line, but if the support of  is
not the entire real line we can just integrate over the support.
Note that this expectation may or may not exist.
LOTUS holds for continuous r.v.s replacing the sum for an integral.

LOTUS, continuous. If  is a continuous r.v. with PDF  and  is a function
from  to , then:

X
f

E(X) = ∫ ∞

−∞
xf(x)dx.

X

X f g
R R

E(g(X)) = ∫ ∞

−∞
g(x)f(x)dx.
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The Uniform distribution that we will
most frequently use is the 
distribution, also called the standard
Uniform.

The  PDF and CDF are
particularly simple:  and

 for .

Uniform Distribution 

A continuous r.v.  is said to have the Uniform distribution on the interval
 if its PDF is:

U ∼ Unif(a, b)

U
(a, b)

fX(x) = { a < x < b

0 x < a or x > b

1
b−a

Unif(0, 1)

Unif(0, 1)
f(x) = 1

F(x) = x 0 < x < 1
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Expectation and Variance - Uniform Distribution

Expectation:

Variance:

E(U) = ∫ b

a
x ⋅ dx = ⋅ ∣∣∣

b

a

= = =1
b−a

1
b−a

x2

2
b2−a2

2(b−a)
(b−a)(b+a)
2(b−a)

b+a
2

E(U 2) = ∫ b

a
x2 ⋅ dx = ⋅ ∣∣∣

b

a

= = =1
b−a

1
b−a

x3

3
b3−a3

3(b−a)
(b−a)(a2+b2+ab)

3(b−a)
a2+b2+ab

3

Then V ar(U) = E(U 2) − [E(U)]2 = − [ ]2a2 + b2 + ab

3
a+ b

2

= − = =
a2 + b2 + ab

3
a2 + 2ab+ b2

4
a2 − 2ab+ b2

12
(b− a)2

12
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Standard Normal distribution 

A continuous r.v.  is said to have the standard Normal distribution if its
PDF  is given by:

We write this as  since, as we will show,  and
.

Normalizing constant:  it makes the PDF to integrate to 1.

Standard Normal CDF  is the accumulated area under the PDF:

It's mathematically impossible to �nd a closed-form expression for the
antiderivative of , this means we cannot express  as a �nite sum of
more familiar functions.

Z ∼ N(0, 1)

Z
φ

φ(z) = e−z
2/2,  for  −∞ < z < ∞.

1

√2π

Z ∼ N(0, 1) E(Z) = 0
V ar(Z) = 1

1
√2π

Φ

Φ(z) = ∫
z

−∞
φ(t)dt = ∫

z

−∞
e−t

2/2dt.
1

√2π

φ Φ
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Let's show that  is a valid PDF. We know  is nonnegative, we only need to

show that the area under  is . We will use the trick of writing the

integral twice to save us some trouble with the antiderivative of .

In the �nal step we switched to polar coordinates. Recall that for polar
coordinates we have  and .

We can now use the substitution . This gives

φ φ

e−z
2/2 √2π

e−z
2/2

(∫ ∞

−∞
e−z

2/2dz)(∫ ∞

−∞
e−z

2/2dz) = (∫ ∞

−∞
e−x

2/2dx)(∫ ∞

−∞
e−y

2/2dy)
= ∫

∞

−∞
∫

∞

−∞
e− dxdy

= ∫
2π

0
∫ ∞

0
e−r

2/2rdrdθ

x2+y2

2

x2 + y2 = r2 dxdy = rdrdθ

u = r2/2, du = rdr

∫ 2π

0
∫ ∞

0
e−r

2/2rdrdθ = ∫ 2π

0
(∫ ∞

0
e−udu) dθ = ∫ 2π

0
1dθ = 2π

⇒ ∫
∞

−∞
e−z

2/2dz = √2π
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Standard Normal distribution properties

Symmetry of PDF:  satis�es  , i.e.,  is an even function.

Symmetry of tail areas: For all ,  For example, the
area under the PDF curve to the left of , which is

 by de�nition, equals to area to the right of 2,
which is 

Symmetry of  and : If  then  as well:

φ φ(z) = φ(−z) φ

z Φ(z) = 1 − Φ(−z).
−2

P(Z ≤ −2) = Φ(−2)
P(Z ≥ 2) = 1 − P(Z < 2) = 1 − Φ(2).

Z −Z Z ∼ N(0, 1), −Z ∼ N(0, 1)

P(−Z ≤ z) = P(Z ≥ −z) = 1 − P(Z < −z) = 1 − Φ(−z) = Φ(Z).
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Normal distribution properties (cont.)

. 

 is an odd function, the area under  in the negative side
cancels the area under g from the positive side. Therefore  You
can use the same argument for  for any odd positive integer n.

. 

since  is an even function.

Use integration by parts: , , , and 

E(Z) = 0 E(Z) = ∫ ∞−∞ ze−z
2/2dz.1

√2π

g(z) = ze−z
2/2 g(z)

E(Z) = 0.
E(Zn) = 0

V ar(Z) = 1 V ar(Z) = E(Z2) − (E(Z))2 = E(Z2)

= ∫ ∞

−∞
z2e−z

2/2dz = ∫ ∞

0
z2e−z

2/2dz,
1

√2π

2

√2π

z2e−z
2/2

u = z dv = ze−z
2/2 du = dz v = −e−z

2/2 :

V ar(Z) = (−ze−z2/2∣∣∣
∞

0
+ ∫

∞

0
e−z

2/2dz) = (0 + ) = 1
2

√2π

2

√2π

√2π
2
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Normal distribution 

But not all normals are centered in 0 and have variance 1.

If  then:  is said to have the Normal Distribution
with mean  and variance , for any real  and  with 
We denote this by 

Z ∼ N(μ,σ2)

Z ∼ N(0, 1), X = μ+ σZ

μ σ2 μ σ2 σ > 0.
Z ∼ N(μ,σ2).
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Standardization

Standardization: the process of getting a standard Normal from a non-
standard Normal. For , the standardized version of  is

We can use standardization to �nd the CDF and PDF of  in terms of the
standard Normal CDF and PDF:

Normal CDF and PDF. Let  Then the CDF of  is:

and the PDF of  is

X ∼ N(μ,σ2). X

∼ N(0, 1).
X − μ

σ

X

X ∼ N(μ,σ2). X

F(x) = Φ( )x− μ

σ

X

f(x) = φ( )x− μ

σ

1
σ
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Proof.

For the CDF, we start from the de�nition , standardize,
and use the CDF of the standard Normal:

Then we di�erentiate to get the PDF, applying the chain rule from Calculus:

Let  We can also write out its PDF as

F(x) = P(X ≤ x)

F(x) = P(X ≤ x) = P ( ≤ ) = Φ( ) .X − μ

σ

x− μ

σ

x− μ

σ

f(x) = Φ( ) = φ( ) .
d

dx

x− μ

σ

x− μ

σ

1
σ

X ∼ N(μ,σ2).

f(x) = exp(− )1

√2πσ

(x− μ)2

2σ2
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68-95-99.7% rule

If  then:

If  then:

,  and .

X ∼ N(μ,σ2),

P(|X − μ| < σ) ≈ 0.68

P(|X − μ| < 2σ) ≈ 0.95

P(|X − μ| < 3σ) ≈ 0.997

X ∼ N(0, 1),

P(|X| < 1) ≈ 0.68 P(|X| < 2) ≈ 0.95 P(|X| < 3) ≈ 0.997
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Example. Let . What is ? Write it �rst in terms of 
and then �nd it approximately.

Another approximation using R:

pnorm(2) - pnorm(-1)

## [1] 0.8185946

(so we don't have to use statistical tables)

X ∼ N(−1, 4) P(|X| < 3) Φ

P(−3 < X < 3) = P ( < < )−3 − (−1)
2

X − (−1)
2

3 − (−1)
2

⇒ P(−3 < X < 3) = P (−1 < Z < 2) = Φ(2) − Φ(−1).

P (−1 < Z < 2) = P(−1 < Z < 1) + P(1 < Z < 2)

= P(−1 < Z < 1) +
P(−2 < Z < 2) − P(−1 < Z < 1)

2

≈ 0.68 + = 0.815.
(0.95 − 0.68)

2
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Exponential Distribution 

Recall that a Geometric random variable counts the number of failures before
the �rst success in a sequence of Bernoulli trials. The story of the Exponential
distribution is analogous, but we are now waiting for a success in continuous
time, where successes arrive at a rate of  successes per unit of time.

An exponential r.v. represents the waiting time until the �rst arrival of a
success. The parameter  in this case can be interpreted as the rate of
successes (or arrivals) per unit of time.

A continuous r.v.  is said to have the Exponential distribution with
parameter , where  if its PDF is:

for . The corresponding CDF is:

X ∼ Expo(λ)

λ

λ

X
λ λ > 0

f(x) = λe−λx,

x > 0

F(x) = 1 − e−λx

21 / 29



 and 

We’ve seen how all Uniform and Normal distributions are related to one
another via location-scale transformations, and we might wonder whether the
Exponential distribution allows this too.

Support , so we shouldn't move the center to the left of 0.
But scale transformations work nicely, and we can use scaling to get from
the simple  to the general :

Let . Then

Conversely, if  then 

Expo(λ) Expo(1)

(0,∞)

Expo(1) Expo(λ)

If X ∼ Expo(1),  then  ∼ Expo(λ).
X

λ

Y = X
λ

P(Y ≤ y) = P ( ≤ y) = P(X ≤ λy) = 1 − e−λy.
X

λ

Y ∼ Expo(λ), λY ∼ Expo(1).
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Mean and variance of  and 

If , then both  and  are obtained using standard
integration by parts calculations:

Coming back to the scale transformation: , where , we

can obtain the mean and variance of the  distribution:

Expo(1) Expo(λ)

X ∼ Expo(1) E(X) V ar(X)

E(X) = ∫
∞

0
xe−xdx = 1

E(X2) = ∫
∞

0
x2e−xdx = 2

Then V ar(X) = E(X2) − (E(X))2 = 1.

Y = X
λ

X ∼ Expo(1)
Expo(λ)

E(Y ) = E( ) = E(X) =
X

λ

1
λ

1
λ

V ar(Y ) = V ar( ) = ( )2V ar(X) = .
X

λ

1
λ

1
λ2
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Memoryless property

The Exponential distribution has a very special property called the
memoryless property, which says that even if you’ve waited for hours or days
without success, the success isn’t any more likely to arrive soon.

A continuous distribution is said to have the memoryless property if a r.v.
 from that distribution satis�es:

for all 

"After you have waited  minutes, the probability you will have to wait another
 minutes is exactly the same as the probability of having to wait  minutes

with no previous waiting time under your belt".

X

P(X ≥ s+ t|X ≥ s) = P(X ≥ t)

s, t ≥ 0.

s
t t
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Exponential distribution has the memoryless property

Conditional on , the additional waiting time  is still
distributed . We can verify this using the de�nition of
conditional probability:

Memoryless property, in practice, means that we assume that there is no
"wear-and-tear" e�ect, since no matter how long the machine has been
functional, conditional on having lived that long, the machine is good as
new.

Some useful applications: radioactive decay, time until the next call,
among others.

Exponential is the only continuous distribution on  that is
memoryless. Geometric distribution is also memoryless.

X ≥ s X − s
Expo(λ)

P(X ≥ s+ t|X ≥ s) = = = e−λs = P(X ≥ t)
P(X ≥ s+ t)
P(X ≥ s)

e−λ(s+t)

e−λs

(0,∞)
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The Geometric distribution is memoryless

It turns out The Geometric distribution is essentially the only discrete
memoryless distribution!

This follows from the story of the Geometric: consider Bernoulli trials, waiting
for the �rst success (and de�ning waiting time to be the number of failures
before the �rst success).

Say we have already had  failures without a success. Then the additional
waiting time from that point forward has the same distribution as the original
waiting time (the Bernoulli trials neither are conspiring against the
experimenter nor act as if the experimenter is due for a success: the trials are
independent).

A calculation agrees: for ,

j

X ∼ Geom(p)

P(X ≥ j+ k ∣ X ≥ j) = = = qk = P(X ≥ k).
P(X ≥ j+ k)

P(X ≥ j)
qj+k

qj
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Poisson Process

The use of  as a parameter in the Exponential distribution and in the
Poisson distribution is no coincidence.

Exponential and Poisson distributions are connected by a common story:
the story of Poisson processes.

Story: sequence of arrivals occurring at di�erent points on a timeline,
such that the number of arrivals in a particular interval of time has a
Poisson distribution.

A process of arrivals in continuous time is called a Poisson process with rate
 if the following two conditions hold:

1. The number of arrivals that occur in an interval of length  is a
 random variable

2. The numbers of arrivals that occur in disjoint intervals are independent
of each other.

λ

λ

t
Pois(λt)

We will concentrate on PP in  for now, but one can de�ne PP on other intervals, and in more than one dimension.(0,∞) 27 / 29



Example ( Poisson process) Arrivals of emails landing in an inbox according to
a Poisson process with rate .

One question you could ask is: in one hour, how many emails will arrive?
in this case you can use a Poisson discrete distribution (we are dealing
with counts).

Another question is: how long does it take until the �rst email arrives?
waiting time is a positive number, and its continuous. Let  be the time
until the �rst email arrives.

 is the same event as , where  is the count of the number of
arrivals from time  to . Note that we are connecting a continuous r.v. with a
discrete r.v. Also,  is the same event as  since both mean that
the th arrival has not happened at time .

If two events are the same, they have the same probability:

Thus,  and we can say that . That
means, the time until the �rst arrival in a Poisson process of rate  has an
Exponential distribution with parameter .

λ

T1

T1 > t Nt = 0 Nt

0 t
Tn > t Nt < n

n t

P(T1 > t) = P(Nt = 0) = = e−λt.
e−λt(λt)0

0!

P(T1 ≤ t) = 1 − e−λt T1 ∼ Expo(λ)
λ

λ
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Additional Practice Problems

1. Let X be a continuous random variable with PDF

(a) Show that this is a valid PDF

(b) Find the CDF

(c) Find the mean and variance of .

2. Suppose that the lifetime of a certain electronic component (in hours) is
exponentially distributed with rate parameter . Find the probability
that the component lasts at least 2000 hours.

3. Suppose that the lifetime  of a fuse (in 100 hour units) is exponentially
distributed with . Find each of the following:

(a) The rate parameter .

(b) The mean and standard deviation.

fX(x) = { x ≥ 1

0 otherwise

3
x4

X

λ = 0.001

X
P(X > 10) = 0.8

λ
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