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De�nition of expectation

One of the most important concepts in probability theory is that of the
expectation of a random variable.

The expected value (also called the expectation or mean) of of a discrete r.v.
 whose distinct possible values are  is de�ned by:

If the support is �nite, then the formula can be replaced by a �nite sum.

We can also write 

In words, the expected value of  is a weighted average of the possible
values that  can take on, each value being weighted by the probability that

 assumes it.

X x1,x2, . . .

E(X) =
∞

∑
i=1

xjP(X = xi).

E(X) =∑
x

x
value 

P(X = x)
PMF at x

.

X
X

X

2 / 22



Example Let  be the result of rolling a fair 6-sided die, so  takes on the
values , with equal probabilities.

Intuitively, we should be able to get the average by adding up these values
and dividing by 6. Using the de�nition, the expected value is

Note that  never equals its mean in this example. This is similar to the fact
that the average number of children per household in some country could be
1.8 , but that doesn't mean that a typical household has 1.8 children!

Example Recall that if  then  has PMF
 and .

Then

Intuitively, this makes sense since it is between the two possible values of ,
compromising between 0 and 1 based on how likely each is.

X X
1, 2, 3, 4, 5, 6

E(X) = 1 ⋅ + 2 ⋅ + ⋯ + 6 ⋅ = (1 + 2 + ⋯ + 6) = 3.5.
1
6

1
6

1
6

1
6

X

X ∼ Bern(p) X

pX(1) = P(X = 1) = p pX(0) = P(X = 0) = 1 − p

E(X) = 1 ⋅ p + 0 ⋅ (1 − p) = p.

X
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Expectation - Discrete Uniform distribution

Let . That is,  takes the values  and

If  this corresponds to the expected value of a dice roll: .

If  and  are discrete r.v.s with the same distribution, then

(if either side exists).

Proof. In the de�nition of , we only need to know the PMF of .

The converse of the above proposition is false since the expected value is just
a one-number summary, not nearly enough to specify the entire distribution.

X ∼ DUnif({1, … ,n}) X 1, … ,n

pX(x) = { x = 1, … ,n
0  otherwise 

1
n

E(X) =
n

∑
x=1

x =
n

∑
x=1

x = (1 + 2 + ⋯ + n) = =
1
n

1
n

1
n

1
n

n(n + 1)
2

n + 1
2

n = 6 7/2

X Y

E(X) = E(Y )

E(X) X
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Expectation - Binomial distribution

Let , let's �nd :

We will use: . This is easy to check algebraically (using the fact

that  for any positive integer ).

X ∼ Bin(n, p) E(X)

E(X) =
n

∑
k=0

kP(X = k) =
n

∑
k=0

k( )pkqn−k.
n

k

k( ) = n( )n
k

n−1
k−1

m! = m(m − 1)! m

n

∑
k=0

k( )pkqn−k =
n

∑
k=0

n( )pkqn−kn

k

n − 1
k − 1

=
n

∑
k=0

np( )pk−1qn−kn − 1
k − 1

= np

n

∑
j=0

( )pjqn−1−j


Bin(n−1,p) PMF

= np ⋅ 1 = np
n − 1
j
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Independent and identically distributed (i.i.d)

We will often work with random variables that are independent and have the
same distribution. We call such r.v.s independent and identically distributed,
or i.i.d. for short.

Random variables are independent if they provide no information about each
other; they are identically distributed if they have the same PMF (or
equivalently, the same CDF).

If , viewed as the number of successes in  independent
Bernoulli trials with success probability , then we can write

 where the  are i.i.d. .

Proof. Let  if the th trial was a success, and  if the th trial was a
failure. It’s as though we have a person assigned to each trial, and we ask
each person to raise their hand if their trial was a success. If we count the
number of raised hands (which is the same as adding up the ), we get the
total number of successes.

X ∼ Bin(n, p) n

p
X = X1 + … + Xn Xi Bern(p)

Xi = 1 i 0 i

Xi
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Linearity of expectation

The most important property of expectation is linearity. The expected value of
a sum of r.v.s is the sum of the individual expected values and we can take out
constant factors from an expectation:

For any r.v.s ,  and any constant ,

Linearity is an extremely handy tool for calculating expected values, often
allowing us to bypass the de�nition of expected value altogether.

Expectation - Binomial Distribution Let . Using linearity of
expectation, we obtain a much shorter path to the result .
We write  as the sum of  independent  r.v.s: ,
where each  has expectation .

By linearity, 

X Y c

E(X + Y ) = E(X) + E(Y )

E(cX) = cE(X).

X ∼ Bin(n, p)
E(X) = np

X n Bern(p) X = I1 + … + In
Ij E(Ij) = p

E(X) = E(I1) + … + E(In) = np.
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Expectation - Hypergeometric distribution

Let , interpreted as the number of white balls in a
sample of size  drawn without replacement from an urn with  white and 
black balls.

As in the Binomial case, we can write  as a sum of Bernoulli random
variables,

where  equals  if the th ball in the sample is white and  otherwise.

By symmetry,  with , since unconditionally the 

th ball drawn is equally likely to be any of the balls.

Unlike in the Binomial case, the  are not independent, since the sampling is

without replacement: given that a ball in the sample is white, there is a lower
chance that another ball in the sample is white. However, linearity still holds
for dependent random variables! Thus,

X ∼ HGeom(w, b,n)
n w b

X

X = I1 + … + In,

Ij 1 j 0

Ij ∼ Bern(p) p = w/(w + b) j

Ij

E(X) = n ⋅ .
w

w + b
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Geometric distribution 

Consider a sequence of independent Bernoulli trials, each with the same
success probability , with trials performed until a success occurs.
Let  be the number of failures before the �rst successful trial. Then  has
the Geometric distribution with parameter . We write .

Example: If we �ip a fair coin until it lands Heads for the �rst time, then the
number of Tails before the �rst occurrence of Heads is distributed as

.

Typical application: how many defective products in a line do I need to �nd
before �nding a non-defective product.

Geometric PMF: If , then the PMF of  is  for
 , where .

To get the Geometric PMF, imagine the Bernoulli trials as a string of 0’s
(failures) ending in a single 1 (success). Each 0 has probability  and
the �nal 1 has probability , so a string of  failures followed by one success
has probability .

X ∼ Geom(p)

p ∈ (0, 1)
X X

p X ∼ Geom(p)

Geom(1/2)

X ∼ Geom(p) X P(X = k) = qkp

k = 0, 1, 2, … q = 1 − p

q = 1 − p
p k

qkp
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Expectation - Geometric distribution

Let . By de�nition,

The geometric series

But the above sum it's not a geometric series because of the extra 
multiplying each term. But we notice that each term looks similar to ,
the derivative of  (with respect to ), so we di�erentiate both sides with
respect to , and get  .

X ∼ Geom(p)

E(X) =
∞

∑
k=0

kqkp,  where q = 1 − p.

∞

∑
k=0

qk =  converges when 0 < q < 1.
1

1 − q

k
kqk−1

qk q

q ∑∞
k=0 kq

k−1 = 1
(1−q)2

Thus E(X) =
∞

∑
k=0

kqkp = pq

∞

∑
k=0

kqk−1 = pq = .
1

(1 − q)2

q

p
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Negative Binomial 

The Negative Binomial distribution generalizes the Geometric distribution:
instead of waiting for just one success, we can wait for any predetermined
number  of successes.

Sequence of independent Bernoulli trials, each with the same success
probability ,  is the number of failures before the th success.

Typical application: how many defective products in a line do I need to �nd
before �nding the th non-defective product.

Negative Binomial PMF: If , then the PMF of  is

To get the Negative Binomial PMF, imagine a string of 0's and 1's, with 1's
representing successes. The probability of any speci�c string of  's and  's
is . How many such strings are there? Because we stop as soon as we hit
the  th success, the string must terminate in a 1. Among the other 
positions, we choose  places for the remaining 1's to go.

X ∼ NBin(r, p)

r

p ∈ (0, 1) X r

r

X ∼ NBin(r, p) X

P(X = n) = ( )prqn for n = 0, 1, 2 … ,  where q = 1 − p.
n + r − 1
r − 1

n0 r1
prqn

r n + r − 1
r − 1
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Expectation - Negative Binomial

Let , viewed as the number of failures before the  th
success in a sequence of independent Bernoulli trials with success
probability . Then we can write  where the  are
i.i.d. .

Proof. See Theorem 4.3.10. page 161.

Using linearity, the expectation of the Negative Binomial now follows without
any additional calculations.

Let . We write , where the  are i.i.d.
 By linearity,

X ∼ NBin(r, p) r

p X = X1 + ⋯ + Xr Xi

Geom(p)

X ∼ NBin(r, p) X = X1 + ⋯ + Xr Xi

Geom(p).

E(X) = E (X1) + ⋯ + E (Xr) = r ⋅ .
q

p
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Indicator random variable

The indicator r.v.  (or ) for an event  is de�ned to be  if  occurs
and  otherwise. So  is a Bernoulli random variable, where success is
de�ned as "event  occurs" and failure is de�ned as "event  does not
occur".

Some useful properties of indicator r.v.s are summarized below.

Let  and  be events. Then the following properties hold:

 for any positive integer .
.
.

.

Indicator r.v.s are important as they provide a link between probability and
expectation.

IA I(A) A 1 A

0 IA
A A

A B

(IA)k = IA k

IAc = 1 − IA
IA∩B = IAIB
IA∪B = IA + IB − IAIB
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Fundamental bridge between probability and expectation

There is a one-to-one correspondence between events and indicator r.v.s,
and the probability of an event  is the expected value of its indicator r.v.

:

Proof. For any event , we have an indicator r.v. . This is a one-to-one
correspondence since  uniquely determines  and vice versa. Since

 with , we have 

Note The fundamental bridge is useful in many expected value problems. We
can often express a complicated discrete r.v. whose distribution we don't
know as a sum of indicator r.v.s, which are extremely simple. The
fundamental bridge lets us �nd the expectation of the indicators; then, using
linearity, we obtain the expectation of our original r.v.

A
IA

P(A) = E(IA)

A IA
A IA

IA ∼ Bern(p) p = P(A) E(IA) = P(A).
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Example (Matching Cards)

We have a well-shu�ed deck of  cards, labeled  through . A card is a
match if the card’s position in the deck matches the card’s label. Let  be the
number of matches; �nd .

Solution Let's write , where

In other words,  is the indicator for , the event that the  th card in the

deck is a match.

By the fundamental bridge,

By linearity,

The expected number of matched cards is , regardless of .

n 1 n
X

E(X)

X = I1 + I2 + ⋯ + In

Ij = { 1  if the j th card in the deck is a match, 
0  otherwise. 

Ij Aj j

E (Ij) = P (Aj) =  for all j.
1
n

E(X) = E (I1) + ⋯ + E (In) = n ⋅ = 1.
1
n
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Law of unconscious statistician (LOTUS)

A function of a random variable is a random variable. That is, if  is a random
variable, then , , and  are also random variables, as is  for
any function . See Section 3.7 in the textbook for more details.

It turns out that it is possible to �nd  directly using the distribution of
X, without �rst having to �nd the distribution of .

If  is a discrete r.v. and  is a function from  to , then

where the sum is taken over all possible values of .

Example Let  denote a random variable that takes on any of the values
 and  with respective probabilities , 

and . Then 

X
X2 eX sin(X) g(X)
g : R → R

E(g(X))
g(X)

X g R R

E(g(X)) =∑
x

g(x)P(X = x),

X

X
−1, 0, 1 P(X = −1) = .2 P(X = 0) = .5

P(X = 1) = .3 E[X2] = (−1)2(.2) + 02(.5) + 12(.3) = .5.
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Variance and standard deviation

The variance of an r.v.  is:

The square root of the variance is called standard deviation (SD):

For any r.v. ,

Proof. Let . Using linearity of expectation,

X

V ar(X) = E(X − E(X))2.

SD(X) =√V ar(X).

X

V ar(X) = E(X2) − (E(X))2

μ = E(X)

V ar(X) = E(X − μ)2 = E(X2 − 2μX + μ2)

= E(X2) − 2μE(X) + μ2 = E(X2) − μ2.
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Example Consider a fair die with  is "number  rolled" then we have
seen that  and

Some properties of variance:

 for any constant .
 for any constant . Variance is not linear!

If  and  are independent, then

, with equality if and only if  for some
constant .

X = i i

E(X) = 7
2

E (X2) = 12 × + 22 × + 32 × + 42 × + 52 × + 62 ×

= =

1
6

1
6

1
6

1
6

1
6

1
6

1 + 4 + 9 + 16 + 25 + 36
6

91
6

Then  Var(X) = E(X2) − (E(X))2 = − ( )2

=
91
6

7
2

35
12

V ar(X + c) = V ar(X) c

V ar(cX) = c2V ar(X) c

X Y
V ar(X + Y ) = V ar(X) + V ar(Y )
V ar(X) ≥ 0 P(X = a) = 1

a
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Variance - Geometric distribution

Let . We know . By LOTUS:

Taking derivative the geometric series  we get

Multiplying both sides by  and taking derivative again we have:

X ∼ Geom(p) E(X) = q/p

E(X2) =
∞

∑
k=0

k2P(X = k) =
∞

∑
k=0

k2pqk =
∞

∑
k=1

k2pqk

∑∞
k=0 q

k = 1
1−q

∑∞
k=0 kq

k−1 =∑∞
k=1 kq

k−1 = .1
(1−q)2

q

∞

∑
k=1

kqk = ⇒
∞

∑
k=1

k2qk−1 =
q

(1 − q)2

1 + q

(1 − q)3

V ar(X) = E(X2) − (E(X))2 = pq − ( )2(1 + q)
(1 − q)3

q

p

= − ( )2

= .
q(1 + q)

p2

q

p

q

p2
19 / 22



Variance - Negative Binomial distribution

Since  r.v. can be represented as a sum of  i.i.d  r.v.s,
and since variance is additive for independent random variables, it follows
that the variance of  is 

Variance - Binomial distribution

Let  and represent  where  is the

indicator of the th trial being a success. Each  has variance:

Note that . Then, since  are independent, we can add their

variances:

NBin(r, p) r Geom(p)

NBin(r, p) r ⋅ .q

p2

X ∼ Bin(n, p) X = I1 + I2 + ⋯ + In Ij
j Ij

V ar(Ij) = E(I 2
j

) − (E(Ij))2 = p − p2 = p(1 − p).

I 2
j = Ij Ij

V ar(X) = V ar(I1) + V ar(I2) + ⋯ + V ar(In) = np(1 − p).
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Poisson Distribution 

An r.v.  has the Poisson distribution with parameter  , where , if

the PMF of  is:  for  We write this as

.

You can show that this is a valid PMF using the Taylor series: 

The Poisson distribution is often used in situations where we are counting the
number of success in a particular region or interval of time, and there are a
large number of trials, each with a small probability of success. Some
examples of r.v.s that could follow a distribution that is approx Poisson:

Number of emails your receive in an hour.
Number of chips in a chocolate chip cookie.
Number of earthquakes in a year in some region of the world.

The parameter  can be interpreted as the rate of occurrence of these rare
events. For example  emails per hour,  chips per cookie, 
earthquakes per year.

X ∼ Pois(λ)

X λ λ > 0
X P(X = k) = ,e−λλk

k! k = 0, 1, 2, … .
X ∼ Pois(λ)

∑∞
k=0 = eλλk

k!

λ
λ = 20 λ = 10 λ = 2
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Expectation - Poisson distribution

Let . Then 

Variance - Poisson distribution

For variance, we �rst need 

If we di�erentiate the series:  with respect to , and multiply

by  in both sides: .

Repeat the procedure (di�erentiate and multiply by ):

X ∼ Pois(λ) E(X) =∑∞
k=0 kP(x = k) =∑∞

k=0 e
−λk λk

k!

= e−λ
∞

∑
k=1

k = λe−λ
∞

∑
k=1

= λe−λeλ = λ.
λk

k!
λk−1

(k − 1)!

E(X2) =∑∞
k=0 k

2P(X = k) =∑∞
k=0 k

2e−λ λk

k!

∑∞
k=0 = eλλk

k! λ

λ ∑∞
k=1 k = λeλλk

k!

λ

∑∞
k=1 k

2 = eλ + λeλ = eλ(1 + λ) ⇒∑∞
k=1 k

2 = λeλ(1 + λ)λk−1

k!
λk

k!

V ar(X) = E(X2) − (E(X))2 = e−λλeλ(1 + λ) − λ2 = λ(1 + λ) − λ2 = λ.
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