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Random variables

In many scenarios, we are interested in a function of the outcome as opposed
to the actual outcome of an experiment. For example, we might be interested
in the sum of two dice and not in the separate values of each die or, when we
flip a coin, we want to know the number of tails.

Real-valued functions defined on the sample space are known as random
variables. Examples include the number of customers visiting a store in a day
or the total score in a basketball game.

Given an experiment with sample space , a random variable (r.v.) is a
function from the sample space  to the real numbers .

It is common, but not required, to denote random variables by capital letters.

A random variable  assigns a numerical value  to each
possible outcome  of an experiment. The randomness comes from the fact
that we have a random experiment (with probabilities described by a
probability function ); the mapping  itself is deterministic.

S
S R

X : S → R X(s)
s

P X
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Example. We are tossing 3 times a fair coin. Note there are  possible
outcomes.

If we call  the number of heads obtained, then it is a random variables such
that

23 = 8

X

P(X = 0) = P({T ,T ,T}) = ,
1
8

P(X = 1) = P({T ,T ,H}, {T ,H,T}, {H,T ,T}) = ,
3
8

P(X = 2) = P({T ,H,H}, {H,T ,H}, {H,H,T}) = ,
3
8

P(X = 3) = P({H,H,H}) = .
1
8

3 / 23



Discrete Random Variables

There are two main types of random variables used in practice: discrete r.v.s
and continuous r.v.s. For now, our focus is on discrete r.v.s.

A r.v.  is said to be discrete if there is a finite list of values 
or an infinite list of values  such that

If  is a discrete r.v. then the finite or countably infinite set of values  such
that  is called support of .

Let  be a discrete random variable with possible values 
The probability mass function (PMF), or distribution of a random variable
tells us the probabilities of these possible values:

for all possible 's.

X a1, a2, . . . , an
a1, a2, . . .

P(X = aj for some j) = 1

X x
P(X = x) > 0 X

X a1, a2, …

pX(ai) = P(X = ai),

ai
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Remark about notation

In writing , we are using  to denote an event, consisting of
all outcomes  to which  assigns the number . This event is also written as

; formally,  is defined as , but writing
 is shorter and more intuitive.

For example, if  is the number of Heads in two fair coin tosses, then
 consists of the sample outcomes  and , which are the two

outcomes to which  assigns the number 1. Since  is a subset of
the sample space, it is an event.

So it makes sense to talk about , or more generally, . If
 were anything other than an event, it would make no sense to

calculate its probability!

It does not make sense to write ; we can only take the probability of an
event, not of an r.v.

P(X = x) X = x

s X x
{X = x} {X = x} {s ∈ S : X(s) = x}
{X = x}

X
{X = 1} HT TH

X {HT ,TH}

P(X = 1) P(X = x)
{X = x}

P(X)
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(1,2) 1 2 3
(1,6) 1 6 7
(2,5) 2 5 7
(3,1) 3 1 4
(4,3) 4 3 7
(5,4) 5 4 9
(6,6) 6 6 12

Since the dice are fair, the PMF of
 is

for  (and
 otherwise); we say

that  has a Discrete Uniform
distribution on .

Similarly,  is also Discrete
Uniform on .

Example (Sum of die rolls) - Discrete Uniform distribution.

We roll two fair 6-sided dice. Let  be the total of the two rolls,
where  and  are the individual rolls. The sample space of this experiment
has 36 equally likely outcomes: .

For example, 7 of the 36 outcomes  are shown in the table below, along with
the corresponding values of , and .

Note that  has the same distribution as  but is not the same random
variable as .

T = X + Y
X Y

S = {(1, 1), (1, 2), … , (6, 5), (6, 6)}

s
X,Y T

s X Y T = X + Y

X

P(X = j) = 1/6

j = 1, 2, … , 6
P(X = j) = 0

X
1, 2, … , 6

Y
1, 2, … , 6

Y X
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Let’s now find the PMF of . By the naive definition of probability,

For all other values of , . We can see that the support of  is
 just by looking at the possible totals for two dice, but note

which shows that all possibilities have been accounted for.

Valid PMF. Let  be discrete r.v. which can take the values .

The PMF  MUST satisfy the following two criteria:

Nonnegative:  if  for some , and 

otherwise;

Sums to 1: 

T

P(T = 2) = P(T = 12) = 1/36,P(T = 3) = P(T = 11) = 2/36,

P(T = 4) = P(T = 10) = 3/36,P(T = 5) = P(T = 9) = 4/36,

P(T = 6) = P(T = 8) = 5/36,P(T = 7) = 6/36.

t P(T = t) = 0 T

{2, 3, . . . , 12}

P(T = 2) + P(T = 3) + ⋅ ⋅ ⋅ + P(T = 12) = 1,

X {x1,x2, …}
pX

pX(x) > 0 x = xj j pX(x) = 0

∞

∑
j=1

pX(xj) = 1
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This R code simulates rolling two dice 10,000 times and plots the probability
mass function (PMF) of the sums of the rolls, allowing us to visualize the
likelihood of each possible outcome (from 2 to 12).

sum_two_dice_rolls <- function(){
dice <- sample(1:6, size = 2, replace = TRUE)
return(sum(dice))
}
sims <- replicate(10000, sum_two_dice_rolls())
plot(table(sims)/length(sims), xlab = 't', ylab = 'PMF', main = '10,000 Rolls') 
points(table(sims)/length(sims),col=1, pch=15)
abline(h=0,col=2)
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Let's break down the R code step by step:

The function sum_two_dice_rolls() simulates rolling two dice. It uses sample() to
randomly select two numbers from 1 to 6 (with replacement). It then returns
the sum of these two numbers:

sum_two_dice_rolls <- function(){
  dice <- sample(1:6, size = 2, replace = TRUE)
return(sum(dice))

}

Run sum_two_dice_rolls() function 10,000 times and stores the results in sims:

sims <- replicate(10000, sum_two_dice_rolls())

Create a plot of the PMF of the simulation results: table(sims) counts the
occurrences of each sum. Dividing by length(sims) converts these counts to
probabilities. The plot is labeled with 'PMF' on the y-axis and 't' on the x-axis.
The title '10000 Rolls' indicates that the simulation uses 10,000 rolls.

plot(table(sims)/length(sims), xlab = 't', ylab = 'PMF', main = '10,000  Rolls')

points() adds points to the plot, using solid squares (pch=15) in black (col=1);
abline(h=0, col=2) adds a horizontal line at y=0 in red (col=2).

points(table(sims)/length(sims) col=1 pch=15)
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Cumulative distribution functions

Another function that describes the distribution of a r.v. is the cumulative
distribution function (CDF). The CDF is defined for all r.v.s (discrete and
continuous).

The cumulative distribution function (CDF) of an r.v.  is the function 
given by

X FX

FX(x) = P(X ≤ x).
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Valid CDFs

Any CDF  has the following properties:

Increasing: if , then .

Right continuous: CDF is continuous except possibly for having some
jumps. Wherever is a jump, the CDF is continuous from the right. That
is:

Convergence to 0 and 1 in the limits:

F

x1 ≤ x2 F(x1) ≤ F(x2)

F(a) = lim
x→a+

F(x)

lim
x→−∞

F(x) = 0

lim
x→∞

F(x) = 1
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Discrete Uniform distribution

Let  be finite, nonempty set of numbers. Choose one of these numbers
uniformly at random (i.e., all values in  are equally likely). Call the chosen
number  (a random variable), then  is said to have the Discrete Uniform
distribution with parameter ; we denote this by .

The PMF of  is

for , and  otherwise. The symbol  is read "is distributed as".

As with questions based on the naive definition of probability, questions
based on a Discrete Uniform distribution reduce to counting problems.
Specifically, for  and any , we have

C
C

X X
C X ∼ DUnif(C)

X ∼ DUnif(C)

P(X = x) =
1

|C|

x ∈ C 0 ∼

X ∼ DUnif(C) A ⊆ C

P(X ∈ A) = .
|A|
|C|

12 / 23



Bernoulli distribution

A Bernoulli trial is an experiment in which there are only two possible
outcomes, such as head or tail, success or failure, defective or nondefective,
patient recovers or does not recover. It is convenient to designate the two
possible outcomes of such an experiment as 0 and 1.

A random variable  has the Bernoulli distribution with parameter  if 
can take only the values  and  and the probabilities

where . We write this as .

If , the PMF of  can be written as:

(and  otherwise).

X p X
0 1

P(X = 1) = p and P(X = 0) = 1 − p,

0 < p < 1 X ∼ Bern(p)

X ∼ Bern(p) X

P(X = k) = pk(1 − p)1−k for k = 0, 1

P(X = k) = 0
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Binomial distribution

Suppose that  independent Bernoulli trials are performed, each with the
same success probability . Let  be the number of successes. The
distribution of  is called Binomial distribution with parameters  and .
We write  where  is a positive integer and .

If , then the PMF of  is:

for   otherwise (this is often implicit).

The cumulative distribution function (CDF) can be expressed as:

where  is the greatest integer less than or equal to  (the "floor" function).

n
p X

X n p
X ∼ Bin(n, p) n 0 < p < 1

X ∼ Bin(n, p) X

P(X = k) = ( )pk(1 − p)n−kn

k

k = 0, 1, 2, . . . ,n. P(X = k) = 0

F(x) = P(X ≤ x) =
⌊x⌋

∑
k=0

( )pk(1 − p)n−k,
n

k

⌊x⌋ x 14 / 23



n <- 50 # number of flips
p <- 0.5 # prob a of a success (let's say heads)
x <- 0:n  # possible values for our random variable
px <- dbinom(x, size = n, prob = p) # this calculates the PMF
plot(x, px, type="h",col=1, main = "Probability mass function for Bin(50,0.5)",
     xlab="x",ylab="p(x)")
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R Commands for the Binomial PMF and CDF

dbinom(k, n, p) gives the PMF  for 

pbinom(k, n, p) gives the CDF  for 

Example. The probability that a patient recovers from a rare blood disease is
. If  people are known to have contracted this disease, what is

the probability that:

(a) exactly 5 survive,
(b) from 3 to 8 survive, and
(c) at least 10 survive?

Solution: Let  be the number of people who survive. Then
.

dbinom(5, 15, 0.4)

## [1] 0.1859378

P(X = k) k = 0, 1, . . . ,n

P(X ≤ k) k = 0, 1, . . . ,n

p = 0.4 n = 15

X
X ∼ Bin(15, 0.4)

(a) P(X = 5) = ( )(0.4)5(1 − 0.4)15−5 = 0.1859
15
5
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pbinom(8, 15, 0.4)

## [1] 0.9049526

pbinom(2, 15, 0.4)

## [1] 0.027114

pbinom(9, 15, 0.4)

## [1] 0.9661667

(b) P(3 ≤ X ≤ 8) = P(X ≤ 8) − P(X ≤ 2)

=
8

∑
k=0

( )(0.4)k(0.6)15−k −
2

∑
k=0

( )(0.4)k(0.6)15−k

= 0.9050 − 0.0271 = 0.8779

15
k

15
k

(c) P(X ≥ 10) = 1 − P(X < 10) = 1 −
9

∑
k=0

( )(0.4)k(0.6)15−k

= 1 − 0.9662 = 0.0338

15
k
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Hypergeometric distribution

The essential structure of the Hypergeometric story is that items in a
population are classified using two sets of tags: in the urn story, each ball is
either white or black (this is the first set of tags), and each ball is either
sampled or not sampled (this is the second set of tags).

Consider an urn with  white balls and  black balls.
We draw  balls out of the urn at random without replacement, such that
all  samples are equally likely.
Let  be the number of white balls in the sample. Then  is said to have
the Hypergeometric distribution with parameters  and  We denote
this by .

If , then the PMF of  is

for integers  satisfying  and .

w b
n

N = w + b
X X

w, b, n.
X ∼ HGeom(w, b,n)

X ∼ HGeom(w, b,n) X

P(X = k) = = ,
( )( )w
k

b
n−k

( )w+b
n

( )( )w
k

N−w
n−k

( )N
n

k 0 ≤ k ≤ w 0 ≤ n − k ≤ b
18 / 23



Proof.

To get , we first count the number of possible ways to draw exactly
 white balls and  black balls from the urn (without distinguishing

between different orderings for getting the same set of balls).

If  or , then the draw is impossible. Otherwise, there are

 ways to draw  white and  black balls by the multiplication

rule, and there are  total ways to draw  balls.

Since all samples are equally likely, the naive definition of probability gives

for integers  satisfying  and .

This PMF is valid because the numerator, summed over all , equals  by

Vandermonde's identity (Example 1.5.3), so the PMF sums to 1 .

P(X = k)
k n − k

k > w n − k > b

( )( )w
k

b
n−k k n − k

( )w+b
n

n

P(X = k) =
( )( )w
k

b
n−k

( )w+b
n

k 0 ≤ k ≤ w 0 ≤ n − k ≤ b

k ( )w+b
n
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Example (Fish Tagging and Recapture)

A small lake contains  fish. One day a fisherman catches  of these fish
and tags them so that they can be recognized if they are caught again. The
tagged fish are released back into the lake. The next day the fisherman goes
out and catches  fish, which are kept in the fishing boat until they are all
released at the end of the day.

The second day’s fishing can be thought of as a sample of size eight taken
without replacement from the fish stock. The sample is taken without
replacement since the fish that are caught are kept in the fishing boat until all
8 fish have been caught (thereby eliminating the possibility of the same fish
being caught twice on the second day).

Consequently, given that all 50 fish are equally likely to be caught, the number
of tagged fish caught on the second day, denoted by , has a hypergeometric
distribution with ,  and .

For example, the probability that 3 tagged fish are caught on the second day
is:

50 10

8

X
w = 10 b = N − w = 50 − 10 = 40 n = 8

P(X = 3) = = 0.147.
( )( )10

3
40

8−5

( )10+40
8
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The Hypergeometric Distribution in R

The values from the previous example:

 the number of white balls drawn without replacement from an urn
which contains both black and white balls

 the number of white balls in the urn

 the number of black balls in the urn

 the number of balls drawn from the urn

k <- 3
w <- 10
b <- 40
n <- 8
dhyper(k, w, b, n)

## [1] 0.1470741

k = 3

w = 10

b = 40

n = 8
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Independence of random variables

Random variables  and  are said to be independent if:

for all 

In the discrete case, this is equivalent to the condition:

for all  with  in the support of  and  in the support of .

You can extend this definition to more than two random variables, and
conditional independence.

Example. Roll two fair dice. Let  be the number on the first die, and  the
number on the second die, then  is not independent of  since

X Y

P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y),

x, y ∈ R.

P(X = x,Y = y) = P(X = x)P(Y = y),

x, y x X y Y

X Y
X + Y X − Y

0 = P(X + Y = 12,X − Y = 1) ≠ P(X + Y = 12)P(X − Y = 1) = ⋅ .1
36

5
36
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Additional Practice Problems*

1. Suppose 70% of all purchases in a certain store are made with credit card.
Let  denote the number of credit card uses in the next 10 purchases. Find
the probability .

2 A company receives 60% of its orders online. Within a collection of 18
independently placed orders, what is the probability that

(a) between eight and ten of the orders are received online?

(b) no more than four of the orders are received online?

3. A jury of 12 people is selected at random from a group of 16 men and 18
women. What is the probability that the jury contains exactly 7 women?

4. Twelve refrigerators have been returned to the distributor because of a
high-pitched oscillating noise. Suppose that four of the 12 have a defective
compressor and the rest less-serious problems. Six refrigerators are selected
at random for problem identification. Let  be the number of those found
with a defective compressor. Find .

*Solutions will be discussed in lecture, if time permits.

X
P(5 ≤ X ≤ 8)

X
P(X = 3)
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