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Thinking conditionally

Conditional probability addresses the fundamental question of how we
should update our beliefs based on the evidence we observe.

You could think of every probability being conditional, whether or not it's
written explicitly. For example, consider a morning when we are interested in
the event  that it will rain that day.

Let  represent our initial assessment of the probability of rain
before looking outside.
If we then look outside and see it is cloudy, our probability of rain should
presumably increase; we denote this new probability as  (read as
“probability of  given ”), where  is the event of being cloudy.
When we go from  to , we say we are “conditioning on ”.
Throughout the day, as we gather more information about the weather
conditions, we can continuously update our probabilities.
If we observe events , then we express our updated
conditional probability of rain given this evidence as .
Ultimately, if it does start raining, our conditional probability becomes 1.

R
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P(R|C)
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Here  is the event whose uncertainty
we want to update, and  is the
evidence we observe (or want to treat
as given).

Conditional Probability Definition

Let  and  be events with . The conditional probability of 
given , denoted by , is defined as

We call  the prior probability of  and  the posterior probability
of  (“prior” means before updating based on the evidence, and “posterior”
means after updating based on the evidence).

See an interesting example at https://setosa.io/conditional/

A B p(B) > 0 A

B p(A ∣ B)

p(A ∣ B) =
p(A ∩B)
p(B)

A
B

p(A) A p(A|B)
A
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Example

Standard deck: 52 cards that are shuffled.
 cards are drawn randomly, one at a time without replacement.

Let  be the event that the first card is a heart.
Let  be the event that the second card is red.
Find  and . Are they equal?

Using the naive definition of probability and the multiplication rule:

 and .

2
A
B
P(A|B) P(B|A)

P(A ∩B) = = ,
13 ⋅ 25
52 ⋅ 51

25
204

P(A) = 1
4 P(B) = 1

2

P(A|B) = = = ,
P(A ∩B)
P(B)

25/204
1/2

25
102

P(B|A) = = = .
P(B ∩A)

P(A)

25/204

1/4
25
51
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In general it is NOT the case that .

People get this confused all the time. For example, saying that there is a very
high probability that an animal has four legs if it is a dog, is not the same as
the probability that an animal is a dog if it has four legs.

In this case, the difference between  and  is obvious but there
are cases where it is less obvious.

This mistake is made often enough in legal cases that it is sometimes called
the prosecutor's fallacy. See Example 2.8.1 page 74.

The Prosecutor's FallacyThe Prosecutor's Fallacy

p(A|B) = p(B|A)

p(A|B) p(B|A)
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A consequence the definition of conditional probability is obtained easily by
moving the denominator in the definition to the other side of the equation.

Probability of the intersection of two events. For any events  and  with
positive probabilities,

Generalizing to the intersection of  events:

Probability of the intersection of  events. For any events  with

The commas denote intersections, e.g., .

Note that there are  theorems in one, since we can permute  in
 different ways.

A B

P(A ∩B) = P(A|B) ⋅ P(B) = P(B|A) ⋅ P(A)

n

n A1, . . . . ,An

P(A1,A2, . . . ,An) > 0,

P(A1,… ,An) = P(A1) ⋅ P(A2|A1) ⋅ P(A3|A1,A2) ⋅ … ⋅ P(An|A1,… ,An−1)

P(A3|A1,A2) = P(A3|A1 ∩A2)

n! A1,… ,An

n!
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Bayes’ rule is an extremely famous, extremely useful result that relates
 to .

Bayes’ rule has important implications and applications in probability and
statistics, since it is so often necessary to find conditional probabilities, and
often  is much easier to find directly than  (or vice versa).

Bayes' rule.

Let  and  be events. We may express  as .
Since  and  are clearly mutually exclusive, we have, by 2nd
axiom of probability,

.

Thus,

P(A|B) P(B|A)

P(B|A) P(A|B)

P(A|B) =
P(B|A)P(A)

P(B)

A B B B = (B ∩A) ∪ (B ∩Ac)
B ∩A B ∩Ac

P(B) = P((B ∩A) ∪ (B ∩Ac)) = P(B ∩A) + P(B ∩Ac)

= P(B|A)P(A) + P(B|A)P(Ac)

P(B) = P(B|A)P(A) + P(B|A) [1 − P(A)]
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Example. An insurance company believes that people can be divided into two
classes: those who are accident prone and those who are not. The company’s
statistics show that an accident-prone person will have an accident at some
time within a fixed 1-year period with probability .4, whereas this probability
decreases to .2 for a person who is not accident prone. If we assume that 30
percent of the population is accident prone, what is the probability that a new
policyholder will have an accident within a year of purchasing a policy?

Solution. We shall obtain the desired probability by first conditioning upon
whether or not the policyholder is accident prone. Let  denote the event
that the policyholder will have an accident within a year of purchasing the
policy, and let  denote the event that the policyholder is accident prone.
Hence, the desired probability is given by

Suppose that a new policyholder has an accident within a year of purchasing a
policy. What is the probability that he or she is accident prone?

Using Bayes' Rule,

A1

A

P(A1) = P(A1|A)P(A) + P(A1|Ac)P(Ac) = (.4)(.3) + (.2)(.7) = .26

P(A|A1) = = (.3)(.4)/(0.26) = 6/13
P(A1|A)P(A)

P(A1)
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Law of total probability (LOTP). Let
 be a partition of the

sample space  (i.e., the  are
disjoint events and their union is ),
with  for all . Then:

Proof. Since  form a partition of , we can decompose  as

As we know these pieces are disjoint, we can use the 2nd axiom of probability:

Then we rewrite each intersection:

A1,… ,An

S Ai

S
P(Ai) > 0 i

P(B) =
n

∑
i=1

P(B|Ai)P(Ai).

Ai S B
B = (B ∩A1) ∪ (B ∩A2) ∪ ⋯ ∪ (B ∩An).

P(B) = P(B ∩A1) + P(B ∩A2) + ⋯ + P(B ∩An)

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + ⋯ + P(B|An)P(An)
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Example (Testing for a rare disease). A patient is tested for a rare disease (that
we know affects  of the population). The test result is positive. Let  be
the event that the patient has the disease, and  be the event that she tests
positive.

Suppose the test is  accurate, i.e.

 (sensitivity or true positive rate) and
 (specificity or true negative rate).

What is the conditional probability that the patient has the rare disease, given
that her test was positive ?

We can use Bayes' Rule in the first step, and then the LOTP:

Then we plug in the defined values:

1% D
T

95%

P(T |D) = 0.95
P(T c|Dc) = 0.95

P(D|T )

P(D|T ) = =
P(T |D)P(D)

P(T )
P(T |D)P(D)

P(T |D)P(D) + P(T |Dc)P(Dc)

P(D|T ) = ≈ 0.16.
0.95 ⋅ 0.01

0.95 ⋅ 0.01 + 0.05 ⋅ 0.99
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Conditional probabilities

Conditional probabilities are probabilities. Some important results:

Conditional probabilities are between  and .

1st Axiom: , 

2nd Axiom: If  are disjoint, then

Complement: 

Inclusion-exclusion:

Remember  is NOT an event. We calculate this assuming that  is
already given (it has occurred).

0 1

P(S|E) = 1 P(∅|E) = 0

A1,A2,…

P(
∞

⋃
j=1

Aj|E) =
∞

∑
j=1

P(Aj|E).

P(Ac|E) = 1 − P(A|E).

P(A ∪B|E) = P(A|E) + P(B|E) − P(A ∩B|E).

A|E E
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Proof of Axiom 1 for conditional probability:

Fix an event , with , and for any event , define

Proof of Axiom 2 for conditional probability:

Fix an event , with , and for any event , define

.
If we define  as disjoint events, then:

Therefore  satisfies the axioms of probability.

E P(E) > 0 A
~
P (A) = P(A|E)
~
P (∅) = P(∅|E) = = 0P(∅∩E)

P(E)
~
P (S) = P(S|E) = = 1

P(S∩E)
P(E)

E P(E) > 0 A
~
P (A) = P(A|E)

A1,A2,…

~
P (A1 ∪A2 ∪ …) = P(A1 ∪A2 ∪ …|E) =

P((A1 ∩ E) ∪ (A2 ∩ E) ∪ …)
P(E)

= =
∞

∑
j=1

~
P (Aj) =

∞

∑
j=1

P(Aj|E)
∑∞

j=1 P(Aj ∩ E)

P(E)

~
P
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Bayes' rule with extra conditioning. Provided that  and
, we have

Note we also have

LOTP with extra conditioning. Let  be a partition of the sample
space  (i.e., the  are disjoint events and their union is ), with

 for all . Then:

P(A ∩ E) > 0
P(B ∩ E) > 0

P(A|B,E) =
P(B|A,E)P(A|E)

P(B|E)

P(A|B,E) =
P(E|A,B)P(A|B)

P(E|B)

A1,… ,An

S Ai S
P(Ai ∩ E) > 0 i

P(B|E) =
n

∑
i=1

P(B|Ai,E)P(Ai|E).
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Independence of events

Motivation: Events are independent if the occurrence of one does not affect
the occurrence of the other i.e.

Independence of two events. Events  and  are independent if

If  and , then this is equivalent to: 
and also equivalent to .

Example Rolling two dice, let  be the event that the sum of the numbers is 7,
 the event that the first die shows 3. These events are independent:

P(A|B) = P(A) ⇔ ⇔ P(A ∩B) = P(A) ⋅ P(B)
P(A ∩B)
P(B)

A B

P(A ∩B) = P(A) ⋅ P(B)

P(A) > 0 P(B) > 0 P(A|B) = P(A)
P(B|A) = P(B)

A
B

= P(A ∩B) = P(A) ⋅ P(B) = ⋅ =
1
36

6
36

1
6

1
36
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If  and  are independent, then  and  are independent,  and 
are independent, and  and  are independent.

Proof. Let  and  be independent. If , then  is independent of
every event, including . Thus we assume . Then

so  and  are independent. The other results can be proven in a similar
way.

Independence of three events. Events , , and  are said to be
independent if all of the following hold:

 (pairwise independence of  and )
 (pairwise independence of  and )
 (pairwise independence of  and )

.

You can define independence of any number of events similarly.

Pairwise independence doesn't imply independence of more events.

A B A Bc Ac B
Ac Bc

A B P(A) = 0 A

Bc P(A) ≠ 0

P(Bc|A) = 1 − P(B|A) = 1 − P(B) = P(Bc)

A Bc

A B C

P(A ∩B) = P(A)P(B) A B

P(A ∩ C) = P(A)P(C) A C

P(B ∩ C) = P(B)P(C) B C

P(A ∩B ∩ C) = P(A)P(B)P(C)
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Conditional independence of events

Conditional independence. Events  and  are said to be conditionally
independent given  if

Independence is a tricky concept. Some notes:

Two events can be conditionally independent given  but not
independent given .

Conditional independence doesn't imply independence
(see Example 2.5.10 page 65)

Independence doesn't imply conditional independence
(see Example 2.5.11 page 66)

A B
E

P(A ∩B|E) = P(A|E)P(B|E).

E
Ec
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Additional Practice Problems*

1. A government agency has developed a scanner which determines whether
a person is a terrorist. The scanner is fairly reliable; 99% of all scanned
terrorists are identified as terrorists, and 95% of all upstanding citizens are
identified as such. An informant tells the agency that exactly one passenger of
100 aboard an a airplane in which in you are seated is a terrorist. The agency
decide to scan each passenger, and the shifty looking man sitting next to you
tests positive. What are the chances that this man really is a terrorist?

2. We have a test such that  (sensitivity) and
 (specificity). Assume the prevalence of HIV is 0.001.

a. Given the first test is positive, event , what is the probability of being HIV

positive?

b. The policy for a positive HIV test is a follow-up confirmatory test. Given the
2nd test is positive, event , what is the probability of being HIV positive?

We can assume the new test is independent of the original test (given his
disease status) and has the same sensitivity and specificity.

*Solutions will be discussed in lecture, if time permits.

P(T +|HIV+) = 0.99
P(T −|HIV+) = 0.99

T +
1

T +
2
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