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Teaching Team

Instructor:

Suzana Șerboi (smilea@ucsc.edu)
Professor Șerboi or Dr. Șerboi, or simply Suzana.

Teaching Assistant:

Peter Trubey (ptrubey@ucsc.edu)

LSS Tutor:

Debi Majumdar (demajumd@ucsc.edu)
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https://ssuzana.github.io/


Materials

Textbook:

Joe Blitzstein and Jessica Hwang (2014). Introduction to Probability.
Second Edition. Chapman & Hall.
A free online version of the book is available at http://probabilitybook.net

Additional Reference:

M.H. DeGroot and M.J. Schervish (2002). Probability and Statistics. Fourth
Edition. Addison Wesley.

Technology:

R and Rstudio installed on your computer recommended:

https://rstudio-education.github.io/hopr/starting.html

You can also write R code at: https://www.mycompiler.io/new/r
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Tips to succeed in this class

Read the syllabus and understand the evaluation of the class.

Read the suggested chapters from the textbook every week.

Attend class, and be an active participant during lectures and discussion
sessions.

Start working on the homework problems early (don't wait until the due
date!); this will make studying for the quizzes and exams a lot less
stressful.

Find a study group and commit to it; this will make the work easier.
Learning is always better with a learning community.

Work on your formula sheet every week. Include theorems, de�nitions,
formulas, and properties discussed in each class.

Don't leave questions about the material unanswered; ask your questions
on our discussion forum Ed Discussion or in o�ce hours.
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Learning Outcomes

After completing this course, successful students will be able to:

Be familiar with the basic approaches to the de�nition of probability.

Understand basic theory to construct probability models for both discrete
and continuous random variables.

Be able to use distribution functions.

Be able to apply the meaning and the applications of joint probability and
joint distribution functions.

Be able to apply the concepts and expectations with respect to a given
probability function.

Understand the meaning and be able to apply the concept of conditional
and marginal probability functions.

Understand and be able to apply the Central Limit Theorem, the Law of
Large Numbers, and the concept of Markov Chains.
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Why study Probability?

Mathematics is the logic of certainty; probability is the logic of uncertainty.

The �eld of probability originated from analyzing gambling and chance-
based games.

It underwent centuries of development before achieving a fully rigorous
mathematical foundation.

Nowadays, probability is used in �elds such as medicine, meteorology,
photography from satellites, marketing, earthquake prediction, human
behavior, the design of computer systems, �nance, genetics, law, etc.

Mastering probability is key to navigating our uncertain world.
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Experiment, sample space and events

An experiment is any process, real or hypothetical, in which the possible
outcomes can be identi�ed ahead of time.

For example, �ipping two coins is an experiment.

The sample space is the collection of all the possible outcomes of an
experiment. The sample space can be �nite or in�nite.

For example, when �ipping two coins, write Heads as  and Tails as . Then
the corresponding sample space is .

Any subset  of the sample space is known as an event. In other words, an
event is a set consisting of possible outcomes of the experiment.

Let  be the even that the two coins come up di�erent. Then
.

H T
S = {HH,HT ,TH,TT}

E

E
E = {HT ,TH}
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Naive De�nition of Probability

If  is a �nite nonempty sample space of equally likely outcomes, and  is
an event, that is, a subset of , then the probability of  is

where  is the size (cardinality) of set .

This de�nition assumes that experiments have �nitely many, "equally
likely" outcomes.

It works well for simple scenarios like fair coin tosses or dice rolls.

However, it becomes problematic when applied to more complex
situations. For instance, it's not logical to claim that the probability of
extraterrestrial life on the moon is 1/2 simply because there are two
possible outcomes (existence or non-existence).

S A
S A

p(A) = = ,
|A|
|S|

number of outcomes favorable to A
total number of outcomes in S

|A| A
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Experiment: Rolling two dice. 

Example (Rolling Two Dice)

Sample space:

An event: Let  denote the event that the sum of the rolls is 4. Then

 and 

Another event: Let  be the event that the two rolls are the same. Then

 and 

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

E

E = {(1, 3), (2, 2), (3, 1)} p(E) = = = .
|E|
|S|

3
36

1
12

F

F = {(i, i) : i = 1 … 6} p(F) = = = .
|F |
|S|

6
36

1
6
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Set Theory Notation

The sample space of an experiment can be thought of as a set, or collection, of di�erent
possible outcomes; and each outcome can be thought of as an element in the sample space.
Similarly, events can be thought of as subsets of the sample space.

English Sets
Events and occurrences
sample space

 is a possible outcome
 is an event

New events from old events
 or  (inclusive)
 and 

not  (the complement of A)

 or , but not both

at least one of 

all of 

Relationships between events
 implies 
 and  are mutually exclusive

 are a partition of 

S

s s ∈ S

A A ⊆ S

A B A ∪ B

A B A ∩ B

A Ac

A B (A ∩ Bc) ∪ (Ac ∩ B)
A1, … ,An A1 ∪ ⋯ ∪ An

A1, … ,An A1 ∩ ⋯ ∩ An

A B A ⊆ B

A B A ∩ B = ∅
A1, … ,An S A1 ∪ ⋯ ∪ An = S,Ai ∩ Aj = ∅ for i ≠ j
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Not true that someone has an
umbrella. = Everyone doesn’t have an
umbrella.

Not true that everyone has an
umbrella. = Someone doesn't have
an umbrella.

De Morgan’s laws

Saying that it is not the case that at least one of  and  occur is the same as
saying that  does not occur and  does not occur:

Saying that it is not the case that both occur is the same as saying that at least
one does not occur:

Analogous results hold for unions and intersections of more than two events.
Let 's be events (e.g., Person i has an umbrella). Then

A B
A B

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

Ai

(⋃
i

Ai)
c

=⋂
i

Ac
i

(⋂
i

Ai)
c

=⋃
i

Ac
i
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This decision process can be visualized
with a tree diagram. Regardless of
whether the type of cone or the �avor
is chosen �rst, there are

 possibilities.

Counting

Many basic probability problems involve counting.

Multiplication Principle Consider a compound experiment consisting of two
sub-experiments: experiment  and experiment . Suppose that
experiment  has a possible outcomes, and for each of those outcomes
experiment  has  possible outcomes. Then the compound experiment
has  possible outcomes.

Example (Ice cream cones) Suppose you are buying an ice cream cone. You
can choose whether to have a cake cone or a wa�e cone, and whether to
have chocolate, vanilla, or strawberry as your �avor.

A B
A
B b

ab

2 ⋅ 3 = 3 ⋅ 2 = 6
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Permutations and factorials Suppose that  positions are to be �lled with 
di�erent objects. There are  choices for �lling the �rst position,  for
the second, ..., and  choice for the last position. So, by the multiplication
principle, there are

possible arrangements. The symbol  is read “n factorial". We de�ne
; that is, we say that zero positions can be �lled with zero objects in

one way.

Each of the  arrangements (in a row) of  di�erent objects is called a
permutation of the  objects.

For example,  is a permutation of .

Example The number of permutations of the four letters  and  is

However, the number of possible four-letter code words using the four letters
 and  if letters may be repeated is , because in this case each

selection can be performed in four ways.

n n
n n − 1

1

n ⋅ (n − 1) ⋅ … ⋅ 2 ⋅ 1 = n!

n!
0! = 1

n! n
n

3, 5, 1, 2, 4 1, 2, 3, 4, 5

a, b, c, d

4! = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24.

a, b, c, d 44 = 256
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Sampling with replacement Consider  objects and making  choices from
them, one at a time with replacement (i.e., choosing a certain object does
not preclude it from being chosen again). Then there are  possible
outcomes (where order matters, in the sense that, e.g., choosing object 3
and then object 7 is counted as a di�erent outcome than choosing object 7
and then object 3.)

For example, imagine a jar with  balls, labeled from  to . We sample balls
one at a time with replacement, meaning that each time a ball is chosen, it is
returned to the jar. Each sampled ball is a sub-experiment with  possible
outcomes, and there are  sub-experiments. Thus, by the multiplication rule
there are

ways to obtain a sample of size .

Example A die is rolled seven times. Note that rolling a die is equivalent to
sampling with replacement from the set  The number of

possible ordered samples is 

n k

nk

n 1 n

n
k

n ⋅ n ⋅ … ⋅ n
k times

= nk

k

{1, 2, 3, 4, 5, 6}.
67 = 279, 936.
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Sampling without replacement Consider  objects and making  choices
from them, one at a time without replacement (i.e., choosing a certain
object precludes it from being chosen again). Then there are

possible outcomes for , and 0 possibilities for  (where
order matters). It is equivalent to the number of permutations of  objects
taken  at a time and is denoted by  or .

In terms of factorials, we have

Again, imagine a jar with  balls, labeled from  to . We sample balls one at a
time without replacement, meaning that each time a ball is chosen, it is NOT
returned to the jar. The number of possible choices decreases by 1 each time.
The above result follows directly from the multiplication rule.

Example The number of possible four-letter code words, selecting from the 26
letters in the alphabet, in which all four letters are di�erent is

n k

n(n − 1) … (n − k + 1)

1 ≤ k ≤ n k > n
n

k P(n, k) nPk

P(n, k) = =
n(n − 1) … (n − k + 1)(n − k) ⋅ … ⋅ 2 ⋅ 1

(n − k) ⋅ … ⋅ 2 ⋅ 1
n!

(n − k)!

n 1 n

26 ⋅ 25 ⋅ 24 ⋅ 23 = 358, 800. 15 / 32



Binomial coe�cient For any nonnegative integers  and , the binomial
coe�cient , read as "n choose k", is the number of subsets of size 

from a set of  elements. Algebraically, binomial coe�cients can be
computed as follows. For , . For , we have

Sets and subsets are by de�nition unordered, e.g., , so
we are counting the number of ways to choose  objects out of , without
replacement and without distinguishing between the di�erent orders.

There are  ways to make an ordered choice of
 elements without replacement. This overcounts each subset of interest by a

factor of  (since we don’t care how these elements are ordered), so we can
get the correct count by dividing by .

Example The number of possible �ve-card hands (in �ve-card poker) drawn
from a deck of 52 playing cards is .

choose(52,5)

## [1] 2598960

k n
( )n
k

k

n
k > n ( ) = 0n

k
k ≤ n

( ) = =
n

k

n ⋅ (n − 1) ⋅ … ⋅ (n − k + 1)
k!

n!
(n − k)!k!

{3, 1, 4} = {4, 1, 3}
k n

n ⋅ (n − 1) ⋅ … ⋅ (n − k + 1)
k

k!
k!

( )52
5
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Deck of Cards

A "standard" deck of playing cards consists of 52 Cards in each of the 4 suits
of Hearts, Spades, Diamonds, and Clubs. Each suit contains 13 cards: Ace, 2, 3,
4, 5, 6, 7, 8, 9, 10, Jack, Queen, King.
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Example (Full House ) What is the
probability that a poker hand contains
a full house, that is, three of one kind
and two of another kind?

Solution: Note that the order of the two kinds matters, because, for instance,
three queens and two aces is di�erent from three aces and two queens.

There are 13 choices for what kind we have three of.

There are  ways to choose three cards out of four of a given kind.

Then there are 12 choices for what kind we have two of, and

 ways to choose two of that kind.

Thus, by the multiplication rule, the number of hands containing a full house

is 

Because there are  poker hands, the probability is

( )4
3

( )4
2

13 ⋅ ( ) ⋅ 12 ⋅ ( ) = 3, 744.4
3

4
2

( ) = 2, 598, 96052
5

p(full house) = ≈ 0.0014.
3, 744

2, 598, 960
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Pigeonehole Principle If  objects are
placed into  boxes, where ,
then there must be at least one box
that contains more than one object.

The birthday problem

The birthday problem, a classic probability puzzle, illustrates both sampling
with and without replacement in its solution.

Given  people, �nd the probability that two have the same birthday.

Assumptions: exclude February 29th, assume the other 365 days are equally
likely and assume birthdays are independent (no twins).

In the birthday problem (assuming there are 365 days in a year), with 366 or
more people there is guaranteed to be at least one birthday match. So, when

, the probability is .

k

k
n k > n

k > 365 1
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The birthday problem (cont.)

Let . A good strategy when trying to �nd the probability of an event is
to start by thinking about whether it will be easier to �nd the probability of
the event or the probability of its complement. In this case, it is easier to �nd
the probability of the complement, i.e. no two people have the same birthday.
Then the probability of having a birthday match will be

The �rst value of  for which the probability exceeds  or  is .In
R, the following code uses prod (which gives the product of a vector) to
calculate the probability of at least one birthday match in a group of 23
people:

k <- 23
1-prod((365-k+1):365)/365^k

## [1] 0.5072972

Go to https://www.mycompiler.io/new/r and replace k <- 23 with k <- 57.

k ≤ 365

1 − P(‘‘no match") = 1 −
365 ⋅ 364 ⋅ … ⋅ [365 − (k − 1)]

365k

k 0.5 50% k = 23
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In the above plot, we see the �rst value of  for which the probability of a
match exceeds 0.5 is . Thus, in a group of 23 people, there is a better
than 50% chance that two or more of them will have the same birthday. For a
quick intuition into why it should not be so surprising, note that with 23
people there are  pairs of people, any of which could be a birthday

match.

k
k = 23

( ) = 25323
2
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To count the number of possible
outcomes, notice that what we are
really doing here is placing

 dividers between
 elements.

Or in other words, we are choosing 
slots for the elements out of

 slots in total.

The number of ways to select 
items out of , unordered and
with replacement, is:

.

Sampling with replacement, unordered

Although not needed as often in the study of probability, it is interesting to
count the number of possible samples of size  that can be selected out of 
objects when the order is irrelevant and when sampling with replacement.

k n

n − 1 = 2 − 1 = 1
k

k

(n − 1) + k

k
n

( ) = ( )n+k−1
k

n+k−1
n−1

*This counting method is sometimes called the stars and bars argument, but
here we used circles in place of stars. See some examples at
https://discrete.openmathbooks.org/dmoi2/sec_stars-and-bars.html 22 / 32
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General De�nition of Probability

A probability space consists of a sample space  and a probability function
 which takes an event  as input and returns , a real number

between  and , as output. The function  must satisfy the following
axioms:

Axiom 1. 

Axiom 2. If  are disjoint events, then

(Saying that these events are disjoint means that they are mutually
exclusive:  for .)

With this de�nition, we can model experiments in which outcomes are either
equally likely or not equally likely by choosing the appropriate probability
function .

S
p A ⊆ S p(A)

0 1 p

p(∅) = 0, p(S) = 1.

A1,A2, …

p( ∞

⋃
i=1

Ai) =
∞

∑
i=1

p(Ai)

Ai ∩ Aj = ∅ i ≠ j

p 23 / 32



Example For a fair coin, the probability that heads comes up when the coin is
�ipped equals the probability that tails comes up, so the outcomes are equally
likely. Consequently, we assign the probability 1∕2 to each of the two possible
outcomes. That is, , where  is the event that heads
comes up and  is the event that tails comes up.
What probabilities should be assigned to these outcomes when the coin is
biased so that heads comes up twice as often as tails?

Solution: For the biased coin we have .
Because , it follows that

.

We conclude that  and .

Example Suppose that a die is biased (or loaded) so that 3 appears twice as
often as each other number but that the other �ve outcomes are equally
likely. What is the probability that an odd number appears when we roll this
die?

Solution: We want to �nd the probability of the event .

We have  and 

It follows that 

p(H) = p(T ) = 1 ∕ 2 H

T

p(H) = 2p(T )
p(S) = p(H ∪ T ) = p(H) + p(T ) = 1

2p(T ) + p(T ) = 3p(T ) = 1
p(T ) = 1

3 p(H) = 2
3

E = {1, 3, 5}
p(1) = p(2) = p(4) = p(5) = p(6) = 1

7 p(3) = .2
7

p(E) = p(1) + p(3) + p(5) = + + = .1
7

2
7

1
7

4
7
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Frequentist vs Bayesian View of Probability

The frequentist view of probability is that it represents a long-run
frequency over a large number of repetitions of an experiment: if we say
a coin has probability of Heads, that means the coin would land Heads
50% of the time if we tossed it over and over and over.

The Bayesian view of probability is that it represents a degree of belief
about the event in question, so we can assign probabilities to hypotheses
like ''candidate A will win the election" or ''the defendant is guilty'' even if
it isn't possible to repeat the same election or the same crime over and
over again.

The Bayesian and frequentist perspectives are complementary, and both will
be helpful for developing intuition.

Regardless of how we choose to interpret probability, we can use the two
axioms to derive other properties of probability, and these results will hold for
any valid probability function.
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Properties of probability

A probability function  has the following properties, for events  and :

1. .

2. If , then .

3. .

Proof of property 1: 

Since  and  are disjoint and their union is , so the 2nd axiom gives:

Also,  by axiom 1.

Thus, 

p A B

p(Ac) = 1 − p(A)

A ⊆ B p(A) ≤ p(B)

p(A ∪ B) = p(A) + p(B) − p(A ∩ B)

p(Ac) = 1 − p(A)

A Ac S

P(S) = P(A ∪ Ac) = P(A) + P(Ac)

P(S) = 1

P(A) + P(Ac) = 1.

26 / 32



Proof of property 2: If , then .

If , then we can write  as the union of  and , where this last
event is the part of  not also in .

Since  and  are disjoint, we can apply the 2nd axiom:

By de�nition, probability is non-negative, so , thus

A ⊆ B p(A) ≤ p(B)

A ⊆ B B A B ∩ Ac

B A

A B ∩ Ac

P(B) = P(A ∪ (B ∩ Ac)) = P(A) + P(B ∩ Ac)
≥0

.

P(B ∩ Ac) ≥ 0

P(B) ≥ P(A).

27 / 32



Proof of property 3: .

We can write  as the union of two disjoint events:  and .

Then

Now we need to show that: .

For that, we can use the 2nd axiom:

, as  and  are disjoint and
their union is .

Thus .

p(A ∪ B) = p(A) + p(B) − p(A ∩ B)

A ∪ B A B ∩ Ac

P(A ∪ B) = P(A ∪ (B ∩ Ac)) = P(A) + P(B ∩ Ac).

P(B ∩ Ac) = P(B) − P(A ∩ B)

P(A ∩ B) + P(B ∩ Ac) = P(B) A ∩ B B ∩ Ac

B

P(B ∩ Ac) = P(B) − P(A ∩ B)
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The third property is a special case of inclusion-exclusion, a formula for
�nding the probability of a union of events when the events are not
necessarily disjoint:

Inclusion-exclusion. For any events , 

For three events, inclusion-exclusion says

A1, … ,An p( n

⋃
i=1

Ai) =

∑
i

p(Ai) −∑
i<j

p(Ai ∩ Aj) + ∑
i<j<k

p(Ai ∩ Aj ∩ Ak) − … + (−1)n+1p( n

⋂
i=1

Ai) .

p(A ∪ B ∪ C) = p(A) + p(B) + p(C) − p(A ∩ B) − p(A ∩ C) − p(B ∩ C) + p(A ∩ B ∩ C)
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Example A survey was taken of a group's viewing habits of sporting events on
TV during the last year. Let  = {watched football},  = {watched basketball},
and  = {watched baseball}.

The results indicate that if a person is selected at random from the surveyed
group, then

 and

It then follows that 

is the probability that this person watched at least one of these sports.

A B
C

p(A) = 0.43, p(B) = 0.40, p(C) = 0.32,

p(A ∩ B) = 0.29, p(A ∩ C) = 0.22,P(B ∩ C) = 0.20,

P(A ∩ B ∩ C) = 0.15.

p(A ∪ B ∪ C) =

= p(A) + p(B) + p(C) − p(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)

= 0.43 + 0.40 + 0.32 − 0.29 − 0.22 − 0.20 + 0.15 = 0.59
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Additional Practice Problems*

1. (a) How many 7-digit phone numbers are possible, assuming that the �rst
digit can’t be a 0 or a 1?

(b) How many 7-digit phone numbers are possible, assuming that the �rst
digit can’t be a 0 or a 1 and that the phone number is not allowed to start with
911?

2. (Leibniz’s mistake) If we roll two fair dice, which is more likely: a sum of 11
or a sum of 12?

3. (a) How many ways are there to split 12 people into 3 teams, where one
team has 2 people, and the other two teams have 5 people each?

(b) How many ways are there to split 12 people into 3 teams, where each
team has 4 people?

4. (Four of a Kind Hand in Poker ) Find the probability that a hand of
�ve cards in poker contains four cards of one kind.

*Solutions will be discussed in lecture, if time permits. 31 / 32



5. A car repair can be performed either on time or late and either satisfactorily
or unsatisfactorily. The probability of a repair being on time and satisfactory is
0.26. The probability of a repair being on time is 0.74. The probability of a
repair being satisfactory is 0.41.
What is the probability of a repair being late and unsatisfactory?

6. In a certain city, three newspapers A, B, and C are published. Suppose that
60 percent of the families in the city subscribe to newspaper A, 40 percent of
the families subscribe to newspaper B, and 30 percent subscribe to
newspaper C. Suppose also that 20 percent of the families subscribe to both A
and B, 10 percent subscribe to both A and C, 20 percent subscribe to both B
and C, and 5 percent subscribe to all three newspapers A, B, and C. What
percentage of the families in the city subscribe to at least one of the three
newspapers?
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