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Abstract

Generalizations of Conway’s Topograph arising from Arithmetic Coxeter Groups

by

Suzana Milea

Conway’s topograph can be used in the study of binary quadratic forms (BQFs)

to replace tedious algebraic computations with straightforward geometric arguments.

The crux of his method is the isomorphism between the arithmetic group PGL2(Z) and

the Coxeter group (3,∞). We introduce the arithmetic groups called dilinear groups

and construct generalizations of Conway’s topograph called dilinear topographs. Then

we use them to study variants of BQFs, called binary quadratic diforms (BQDs). The

payoff can be seen in the last chapter in our investigation of minimum value bounds for

diforms and pairs of BQFs.
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Introduction

Conway introduces in [2] a simple and elegant combinatorial-geometric method

of classifying all integral binary quadratic forms (BQFs), and answering some basic ques-

tions about them. The geometry of Conway’s topograph reflects the fact that PGL2(Z)

is isomorphic to the Coxeter group of type (3,∞).

Let σ > 1 be a square-free positive integer. The dilinear group DL2(Z[
√
σ]) is

the group of invertible matrices with entries in Z[
√
σ], where one diagonal has entries

in Z and the other diagonal has entries in Z · √σ. Johnson and Weiss show in [5] that

when σ = 2 or σ = 3 the dilinear groups admit Coxeter group presentations.

Whenever there is an isomorphism from a Coxeter group to an arithmetic group,

it is natural to look for arithmetic interpretations. The coincidence between the dilinear

groups and the Coxeter groups (4,∞) and (6,∞) led to the creation of the “dilinear

topographs”. These geometric objects can be used to study binary quadratic “diforms”

and easily bound the minima of BQFs.

Here is a brief outline of each of the chapters in this thesis. Chapter 1 is

collection of results and definitions necessary for later chapters. The notions of incidence

system, incidence geometry and Coxeter geometry are introduced in Section 1.3.
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Chapter 2 introduces the dilinear groups and describes their action on divectors.

The goal is to give the group isomorphism from (2σ,∞) to DL2(Rσ) when σ = 2, 3. In

Chapter 3 we introduce the dilinear topograph as an incidence system and prove that

it is an incidence geometry (all maximal flags are chambers). We then use the group

isomorphism described in Chapter 2 to prove that this geometry is isomorphic to the

Coxeter geometry.

Chapter 4 introduces binary quadratic diforms, and their connection to BQFs.

Their topographs exhibit similar features to Conway’s topograph. We give the arithmetic

progression property, climbing principle and the local formulas for the discriminant (from

any cell in the topograph). We finish the chapter with a discussion on how the values

from two Conway’s topographs interlace in the topograph of a diform.

Chapter 5 is focused on nondegenerate indefinite diforms. Their topograph

contain both positive and negative values. As in Conway’s topograph, the river is the

set of segments separating positive values from negative ones. Analyzing the shape of

the river helps us determine minimum-value bounds for diforms and for pairs of related

BQFs.
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Chapter 1

Preliminaries

1.1 Reflection groups

The results presented in this section may be found in Chapter 7 of Ratcliffe’s

book Foundations of Hyperbolic Manifolds [9].

Let X denote the unit n-sphere Sn, the Euclidean n-space En or the hyperbolic

n-space Hn. Let P be an n-dimensional convex polyhedron in X and let F be a facet

of P (i.e. a face of dimension n − 1). The reflection of X in the facet F of P is the

reflection of X in the hyperplane spanned by F .

Definition 1. A subset R of a metric space X is a fundamental region for a group Γ of

isometries of X if and only if

(1) the set R is open in X;

(2) the members of {gR : g ∈ Γ} are mutually disjoint; and

(3) X = ∪{gR : g ∈ Γ}. Here R denotes the closure of R.
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Definition 2. A subset D of a metric space X is a fundamental domain for a group Γ

of isometries of X if and only if D is a connected fundamental region for Γ.

Definition 3. A fundamental region R for a group Γ of isometries of a metric space X

is locally finite if and only if {gR : g ∈ Γ} is a locally finite family of subsets of X (i.e. for

each point x of X, there is an open neighborhood U of x in X such that U meets only

finitely many members of the family).

Definition 4. A convex fundamental polyhedron for a discrete group Γ of isometries of

X is a convex polyhedron P in X whose interior is a locally finite fundamental domain

for Γ.

Definition 5. A convex fundamental polyhedron P for a discrete group Γ of isometries

of X is exact if for each facet F of P there is an element g of Γ such that F = P ∩ g(P ).

Theorem 6. ([9], p.252) If F is a facet of an exact, convex, fundamental polyhedron P

for a discrete group Γ of isometries of X, then there is a unique element gF 6= 1 of Γ

such that F = P ∩ gF (P ), moreover g−1
F (F ) is a facet of P .

The group Γ is defined to be a discrete reflection group, with respect to the

polyhedron P , if and only if gF is the reflection of X in the hyperplane spanned by F

for each facet F of P .

Theorem 7. ([9], p.265) Let Γ be a discrete reflection group with respect to the polyhe-

dron P . Then all the dihedral angles of P are submultiples of π; moreover, if gF1 and gF2

are the reflections in adjacent facets F1 and F2 of P , and θ(F1, F2) = π/k, then gF1gF2

has order k in Γ.
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Theorem 8. ([9], p.265) Let P be a finite-sided, n-dimensional, convex polyhedron in

X of finite volume all of whose dihedral angles are submultiples of π. Then the group

Γ generated by the reflections of X in the facets of P is a discrete reflection group with

respect to the polyhedron P .

Theorem 9. ([9], p.273) Let Γ be a discrete reflection group with respect to a polyhedron

P in X with finitely many facets and finite volume. Let {Fi} be the set of facets of P

and for each pair of indices i, j such that Fi and Fj are adjacent, let kij = π/θ(Fi, Fj).

Then

〈Fi | F 2
i = 1, (FiFj)

kij = 1〉

is a group presentation for Γ under the mapping Fi 7→ gFi .

Here it is understood that (FiFj)
kij is to be deleted if kij =∞.

1.2 Coxeter groups

We will mainly follow the classical reference Reflection groups and Coxeter

groups by Humphreys [4] to reproduce definitions and essential properties of Coxeter

groups. The definition of a Coxeter group was motivated by finite groups generated

by reflections and ‘most’ finite reflection groups turn out to be ‘Weyl groups’ (thus the

letter W is used).

Definition 10. A group W is a Coxeter group if there is a finite subset S of W such

that W has the presentation

〈s ∈ S | (ss′)m(s,s′) = 1〉

5



where m(s, s′) ∈ {2, 3, 4, ...,∞} is the order of ss′, s 6= s′, and m(s, s) = 1. (When

m(s, s′) =∞ there is no relation between s and s′).

The pair (W,S) is called a Coxeter system. The cardinality of S is called the

rank of (W,S). Since the generators s ∈ S have order 2 in W , each w 6= 1 in W can be

written in the form w = s1s2 · · · sr for some si (not necessarily distinct) in S. If r is as

small as possible, call it the length of w, written l(w).

A convenient way of describing a Coxeter system (W,S) is through the con-

struction of its Coxeter graph.

Definition 11. The Coxeter graph of the Coxeter system (W,S) is an edge labelled

graph ΓW , with one node for each s ∈ S and an edge from s to s′ if m(s, s′) > 2, labeled

m(s, s′). (In practice, if m(s, s′) = 3, the label is supressed).

Example 12. The symmetric group Σn of permutations of n letters is a Coxeter system

when we let S = {(i i+ 1) : 1 ≤ i < n} be the set of elementary transpositions.

The Coxeter graph of (Σn, S) is

(1 2) (2 3) (n− 2 n− 1) (n− 1 n)

where the ith node corresponds to (i i+ 1), 1 ≤ i < n.

Example 13. The group generated by s0, s1, s2, subject to the relations

s2
0 = s2

1 = s2
2 = (s1s2)a = (s0s2)2 = 1.

has the following graph
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s2 s1 s0

a ∞

We will call this the Coxeter group of type (a,∞).

Example 14. Let Γ be a discrete reflection group with respect to a finite-sided poly-

hedron P of finite volume. Let {Si} be the set of facets of P , let kii = 1 for each i, and

for each pair of indices i, j such that Si and Sj are adjacent, let kij = π
θ(Si,Sj) , and let

kij =∞ otherwise. Let si be the reflection corresponding to the facet Si. Then Theorem

9 implies that Γ is the Coxeter group with presentation

〈si | (sisj)kij = 1〉.

We can give a description of a Coxeter group as a motion group generated by

mirror reflections through a hyperplane with respect to a bilinear form. We redefine a

reflection to be merely a linear transformation which fixes a hyperplane pointwise and

sends some nonzero vector to its negative.

Definition 15. Let (W,S) be a Coxeter system. For a subset T of S, let WT denote

the subgroup of W generated by s ∈ T and W T denote the subgroup of W generated

by s ∈ S \ T . Any conjugate a subgroup of the form WT is called a parabolic subgroup.

Theorem 16. ([4], p.113) For each subset T of S, the pair (WT , T ) is a Coxeter system.

We say a Coxeter system (W,S) is irreducible if the Coxeter graph Γ is con-

nected.

Theorem 17. ([4], p.129) Let (W,S) be any Coxeter system. If Γ1, · · · ,Γr are the

connected components of the Coxeter graph Γ, let S1, · · · , Sr be the corresponding subsets
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of S. Then W is the direct product of the parabolic subgroups WS1 , · · · ,WSr , and each

Coxeter system (WSi , Si) is irreducible.

1.3 Incidence geometry

The goal of this section is to define the notion of flag for a general Coxeter

system (W,S) (with finite S) and the incidence geometry of such flags. We are following

Buekenhout and Cohen’s book called Diagram Geometry [1].

Definition 18. Let I be a set. A triple Γ = (X, ∗, τ) is called an incidence system over

I if

(1) X is a set (its elements are also called elements of Γ );

(2) ∗ is a symmetric and reflexive relation on X; it is called the incidence

relation of Γ;

(3) τ is a map from X to I, called the type map of Γ, such that distinct

elements x, y ∈ X with x ∗ y satisfy τ(x) 6= τ(y); members of the pre-image τ−1(i) are

called elements of type i, or i-elements.

The set I is called the type of Γ and the cardinality of I is called the rank of

Γ. Its elements as well as its subsets are called types. If A ⊆ X, we say that A is of type

τ(A) and of rank |τ(A)|, the cardinality of τ(A).

In an incidence system Γ = (X, ∗, τ) over I, the set X is the disjoint union of

the sets Xi = τ−1(i), for i ∈ I. Thus, (X, ∗) is a multipartite graph with partitioning

(Xi)i∈τ(X).
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Definition 19. A flag of Γ is a set of mutually incident elements of Γ. Flags of Γ of

type I are called chambers.

Remark 20. A flag of Γ has at most one element of each type.

Remark 21. By Zorn’s lemma, every flag is contained in at least one maximal flag, that

is, a flag not properly contained in any other flag. In an incidence system, chambers are

maximal flags. In general, however, the converse does not hold.

Definition 22. Let Γ be an incidence system over I. If every maximal flag of Γ is a

chamber, then Γ is called a geometry over I.

Definition 23. Let Γ = (X, ∗, τ) be an incidence system over I and Γ′ = (X ′, ∗′, τ ′) an

incidence system over I ′. A weak homomorphism α : Γ→ Γ′ is a map α : X → X ′ such

that, for all x, y ∈ X,

(1) x ∗ y implies α(x) ∗′ α(y) (i.e. α preserves incidence);

(2) τ(x) = τ(y) implies τ ′(α(x)) = τ ′(α(y)) (i.e. α sends elements of the same

type in I to elements of the same type in I ′).

If, in addition, I = I ′ and τ(x) = τ ′(α(x)) for all x ∈ X, then α is called a

homomorphism. A bijective weak homomorphism α whose inverse α−1 is also a weak

homomorphism is called a correlation. If α is a homomorphism and a correlation, then

we call α an isomorphism (of incidence systems) and write Γ ∼= Γ′.

Definition 24. Let (Gi)i∈I be a system of subgroups of the groupG. The coset incidence

system of G over (Gi)i∈I , denoted by Γ(G, (Gi)i∈I) is the incidence system over I, whose

elements of type i are the cosets of Gi in G and in which the incidence relation is given
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by

aGi and bGj are incident if and only if aGi ∩ bGj 6= ∅.

If Γ(G, (Gi)i∈I) is a geometry it is called the coset geometry.

Remark 25. In Definition 24 we say “system” of subgroups rather than “set” of subgroups

to prevent the confusion in case two subgroups Gj and Gk are the same for distinct

j, k ∈ I. A coset of Gj coincides with a coset of Gk only if Gj = Gk. So, if the

subgroups of the system are chosen to be mutually distinct, the union of G/Gi over all

i ∈ I is disjoint. Furthermore, an instance Gj = Gk for distinct j and k does not provide

an interesting geometry.

Remark 26. G acts on the coset incidence system Γ(G, (Gi)i∈I) by left multiplication.

The notation Gi has been chosen so as to resemble the notation for the stabilizer in G

of an element of type i. Indeed, Gi is the stabilizer of the element Gi of type i and

{Gi|i ∈ I} is a chamber of Γ(G, (Gi)i∈I).

Definition 27. Given subgroups Gi (i ∈ I) of G, and J ⊆ I, we write GJ to denote

⋂
j∈J Gj . We call this subgroup the standard parabolic subgroup of G of type J (so

G{j} = Gj for each j ∈ J).

The following result gives three equivalent conditions necessary for a coset

incidence system to be a geometry.

Theorem 28. ([1], p.33) Let Γ be the coset incidence system of G over (Gi)i∈I . If I is

finite, then the following statements are equivalent.
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(i) G is flag transitive on Γ.

(ii) For each subset J of I of size three, the group G is transitive on the set of

flags of type J , and for each i ∈ I the subgroup Gi is flag transitive on Γ(Gi, (G{i,j})j∈I\{i}).

(iii) For each J ⊆ I and each i ∈ I \ J , we have GJGi =
⋂
j∈J(GjGi).

If one (whence all) of these properties hold, then Γ is a geometry.

Let I be a finite set and (W,S = {si}i∈I) be a Coxeter system. Let W i denote

the parabolic subgroup of W generated by s ∈ S \ {si}. Let ΓW be the coset incidence

system of W over {W i}i∈I . In this case condition (iii) of the above theorem is exactly

the statement of the following result. Thus ΓW is a geometry (called Coxeter geometry).

Proposition 29. ([10], Prop.2.2.12) Let (W,S) be a Coxeter system of finite rank. For

any proper non-empty subset T ⊆ S, and for any s ∈ S \ T ,

W TW s =
⋂

t∈T
W tW s.

1.4 Conway’s topograph

Parts of this section have already appeared in our article in PNAS [8]. The

purpose of this section is to describe the combinatorial-geometric method for analyz-

ing integer-valued binary quadratic forms introduced in Conway’s book The Sensual

(Quadratic) Form [2].

Recall that binary quadratic forms (BQFs) are functions Q : Z2 → Z of the

form Q(x, y) = ax2 + bxy + cy2; with a, b, c ∈ Z. Since Q(kx, ky) = k2Q(x, y), to

understand the values of Q at all vectors in Z2 it will suffice to explore its values at
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primitive vectors, i.e. vectors ~v = (a, b) ∈ Z2 with the property that a and b are coprime

integers. Also, since Q(−~v) = Q(~v) it will be convenient to think of ~v and −~v as the

same vector. Such a vector will be written ±~v and called a lax vector.

Definition 30. A lax basis is an unordered pair {±~v,±~w} of primitive lax vectors which

form a Z-basis of Z2.

Definition 31. A lax superbasis is an unordered triple {±~u,±~v,±~w}, any two of which

form a lax basis.

Definition 32. The topograph is the incidence system of type I = {0, 1, 2}, consisting

of: faces (elements of type 2) are primitive lax vectors, edges (elements of type 1) are

lax bases, and points (elements of type 0) are lax superbases. Incidence among points,

edges, and faces is defined by containment (symmetrically).

A maximal flag in this context refers to a point contained in an edge contained

in a face. Conway shows in his book ([2]) how every partial flag can be completed to a

chamber. He describes how primitive lax vectors can be completed to lax bases, then

to lax superbases. Since every maximal flag is a chamber, Conway’s topograph is a

geometry over I. The geometry is displayed in Figure 1.1; the points and edges form a

ternary regular tree, and the faces are ∞-gons.

The geometry of Figure 1.1 also arises as the coset geometry of the Coxeter

group W of type (3,∞) generated by the set S = {si}i∈I where I = {0, 1, 2}. For a

subset J of I, the flags of type J are cosets W/W J . The maximal flags are the flags of

type I, i.e., the cosets W/W I = W/W∅ = W/{Id} = W . Since the action of W on W

12



±(1, 0)

±(0, 1)

±(1, 1)

±(1, 2)

±(1,�1)

±(2, 1)

±(1, 3)

±(2, 3)

±(1,�2)

±(2,�1)

±(3, 2)

±(3, 1)

±(1, 4)

±(2, 5)

±(3, 5)

±(3, 4)

±(1,�3)

±(2,�3)

±(3,�1)

±(3,�2)

±(4, 3)

±(5, 3)

±(5, 2)

±(4, 1)

±(1, 5)

±(2, 7)

±(3, 8)

±(3, 7)

±(4, 7)

±(5, 8)

±(5, 7)

±(4, 5)

±(1,�4)

±(2,�5)

±(3,�4)

±(3,�5)

±(4,�1)

±(5,�2)

±(5,�3)

±(4,�3)

±(5, 4)

±(7, 5)

±(8, 5)

±(7, 4)

±(7, 3)

±(8, 3)

±(7, 2)

±(5, 1)

±(1, 6)

±(2, 9)

±(3, 11)

±(3, 10)

±(4, 11)

±(5, 13)

±(5, 12)

±(4, 9)

±(5, 9)

±(7, 12)

±(8, 13)

±(7, 11)

±(7, 10)

±(8, 11)

±(7, 9)

±(5, 6)

±(1,�5)

±(2,�7)

±(3,�7)

±(3,�8)

±(4,�5)

±(5,�7)

±(5,�8)

±(4,�7)

±(5,�1)

±(7,�2)

±(8,�3)

±(7,�3)

±(7,�4)

±(8,�5)

±(7,�5)

±(5,�4)

±(6, 5)

±(9, 7)

±(11, 8)

±(10, 7)

±(11, 7)

±(13, 8)

±(12, 7)

±(9, 5)

±(9, 4)

±(12, 5)

±(13, 5)

±(11, 4)

±(10, 3)

±(11, 3)

±(9, 2)

±(6, 1)

±(1, 7)

±(2, 11)

±(3, 14)

±(3, 13)

±(4, 15)

±(5, 18)

±(5, 17)

±(4, 13)

±(5, 14)

±(7, 16)

±(5, 11)

±(6, 11)

±(9, 16)

±(9, 14)

±(9, 13)

±(10, 13)

±(11, 14)

±(9, 11)

±(6, 7)

±(1,�6)

±(2,�9)

±(3,�10)

±(3,�11)

±(4,�9)

±(5,�12)

±(5,�13)

±(4,�11)

±(5,�6)

±(7,�9)

±(8,�11)

±(7,�10)

±(7,�11)

±(8,�13)

±(7,�12)

±(5,�9)

±(6,�1)

±(9,�2)

±(11,�3)

±(10,�3)

±(11,�4)

±(13,�5)

±(12,�5)

±(9,�4)

±(9,�5)

±(12,�7)

±(13,�8)

±(11,�7)

±(10,�7)

±(11,�8)

±(9,�7)

±(6,�5)

±(7, 6)

±(11, 9)

±(14, 11)

±(13, 10)

±(13, 9)

±(14, 9)

±(16, 9)

±(11, 6)

±(11, 5)

±(16, 7)

±(17, 7)

±(14, 5)

±(13, 4)

±(17, 5)

±(18, 5)

±(15, 4)

±(13, 3)

±(14, 3)

±(11, 2)

±(7, 1)

±(1, 8)
±(2, 13)

±(3, 17)

±(3, 16)

±(4, 17)

±(5, 16)

±(6, 13)

±(7, 13)

±(11, 13)

±(7, 8)

±(1,�7)

±(2,�11)

±(3,�13)

±(3,�14)

±(4,�13)

±(5,�17)

±(5,�18)

±(4,�15)

±(5,�11)

±(7,�16)

±(8,�19)

±(7,�17)

±(7,�18)

±(8,�21)

±(7,�19)

±(5,�14)

±(6,�7)

±(9,�11)

±(11,�14)

±(10,�13)

±(11,�15)

±(13,�18)

±(12,�17)

±(9,�13)

±(9,�14)

±(12,�19)

±(11,�18)

±(10,�17)

±(11,�19)

±(9,�16)

±(6,�11)

±(7,�1)
±(11,�2)

±(14,�3)

±(13,�3)

±(15,�4)

±(18,�5)

±(17,�5)

±(13,�4)

±(14,�5)

±(19,�7)

±(21,�8)

±(18,�7)

±(17,�7)

±(19,�8)

±(16,�7)

±(11,�5)

±(11,�6)

±(16,�9)

±(19,�11)

±(17,�10)

±(18,�11)

±(19,�12)

±(14,�9)

±(13,�9)

±(17,�12)

±(18,�13)

±(15,�11)

±(13,�10)

±(14,�11)

±(11,�9)

±(7,�6)

±(8, 7)

±(13, 11)

±(13, 7)

±(13, 6)

±(17, 6)

±(16, 5)

±(17, 4)

±(19, 4)

±(16, 3)

±(17, 3)

±(13, 2)

±(8, 1)

±(1, 9)
±(2, 15)

±(3, 19)

±(7, 15)

±(8, 15)

±(8, 9)

±(1,�8)
±(2,�13)

±(3,�16)

±(3,�17)

±(4,�17)

±(4,�19)

±(5,�16)

±(5,�19)

±(6,�13)

±(9,�20)

±(6,�17)

±(7,�8)

±(11,�13)

±(14,�17)

±(13,�16)

±(13,�17)

±(11,�16)

±(11,�17)

±(11,�20)

±(7,�13)

±(8,�1)
±(13,�2)

±(17,�3)

±(16,�3)

±(19,�4)

±(22,�5)

±(17,�4)

±(19,�5)

±(16,�5)

±(17,�6)

±(20,�9)

±(13,�6)

±(13,�7)

±(20,�11)

±(17,�11)

±(16,�11)

±(17,�13)

±(16,�13)

±(17,�14)

±(13,�11)

±(8,�7)

±(9, 8)

±(15, 8)

±(15, 7)

±(19, 3)

±(20, 3)

±(15, 2)
±(9, 1)

±(1, 10)
±(2, 17)

±(9, 10)

±(1,�9)
±(2,�15)

±(3,�19)

±(3,�20)

±(6,�19)

±(7,�15)

±(8,�9)

±(13,�15)

±(8,�15)

±(9,�1)
±(15,�2)

±(20,�3)

±(19,�3)

±(21,�4)

±(21,�5)

±(19,�6)

±(20,�7)

±(15,�7)

±(15,�8)

±(19,�13)

±(15,�13)

±(9,�8)

±(10, 9)

±(17, 2)±(10, 1)

±(1, 11) ±(2, 19)

±(10, 11)

±(1,�10)
±(2,�17)

±(8,�17)

±(9,�10)

±(15,�17)

±(9,�17)

±(10,�1)±(17,�2)

±(17,�8)

±(17,�9)

±(17,�15)

±(10,�9)

±(11, 10)

±(19, 2)±(11, 1)

±(1, 12)

±(11, 12)

±(1,�11)±(2,�19)

±(9,�19)

±(10,�11)

±(10,�19)

±(11,�1)±(19,�2)

±(19,�9)

±(19,�10)

±(11,�10)

±(12, 11)

±(12, 1)

±(1, 13)
±(1,�12)

±(11,�12)

±(12,�1)±(21,�2)

±(12,�11)

±(13, 1)

±(1, 14)
±(1,�13)

±(12,�13)

±(13,�1)

±(13,�12)

±(14, 1)

±(1, 15)
±(1,�14)

±(13,�14)

±(14,�1)

±(14,�13)

±(15, 1)

±(1, 16)
±(1,�15)

±(14,�15)

±(15,�1)

±(15,�14)

±(16, 1)

±(1, 17)±(1,�16)

±(15,�16)

±(16,�1)

±(16,�15)

±(17, 1)

±(1,�17)

±(17,�1) ±(18, 1)

±(1,�18)

±(18,�1)±(19,�1)

Figure 1.1: Conway’s geometry of primitive lax vectors, lax bases, and lax superbases.

by left-multiplication is simply-transitive, the Coxeter group W acts simply-transitively

on the maximal flags.

The geometric coincidence reflects the fact that PGL2(Z) is isomorphic to the

Coxeter group W of type (3,∞), a classical result known to Poincaré and Klein. This

raised the natural question: given a coincidence between an arithmetic group and a

Coxeter group, is there an arithmetic interpretation of the flags in the Coxeter group?
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1.5 Topographs of binary quadratic forms

Parts of this section have already appeared in our article in PNAS [8]. A

detailed description of topographs of BQFs can be found in Chapter III of the book An

Illustrated Theory of Numbers [11].

Let Q be a BQF. We can obtain Conway’s topograph of Q by labeling the faces

of the topograph: the face corresponding to the primitive lax vector ±~v is labeled by

the value Q(±~v). Figures 1.2 and 1.3 display examples.
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Figure 1.2: The topograph of Q(x, y) = x2 + 2y2, with arrows exhibiting the climbing

principle. The well (source of the flow) is the cell at the center of the figure.
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If u, v, e, f appear on the topograph of Q, in a local arrangement we call a cell,

then Conway observes that the integers e, u+ v, f form an arithmetic progression.

u
v

e f f − (u+ v) = (u+ v)− e.

The discriminant of Q can be seen locally in the topograph, at every cell, by

the formula

∆ = u2 + v2 + e2 − 2uv − 2ve− 2eu = (u− v)2 − ef.

A consequence of the arithmetic progression property is Conway’s climbing

principle; if all values in a cell are positive, place arrows along the edges in the directions

of increasing arithmetic progressions. Then every arrow propagates into two arrows; the

resulting flow along the edges can have a source, but never a sink. This implies the

existence and uniqueness of a well for positive-definite forms: a triad or cell which is

the source for the flow. The well gives the unique Gauss-reduced form QGr in the

SL2(Z)-equivalence class of Q. More precisely, every well contains a triple u ≤ v ≤ w of

positive integers satisfying u+v ≥ w, with strict inequality at triad-wells and equality at

cell-wells (see Figure 1.2). Depending on the orientation of u, v, w at the well, the Gauss-

reduced form is given below; in the ambiguously-oriented case with u = v, QGr(x, y) =

ux2 + (u + v − w)xy + vy2. If u + v = w, both orientations occur in a cell-well, and

QGr(x, y) = ux2 + vy2.

u
v

w QGr(x, y) = ux2 + (u+ v − w)xy + vy2
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u
v

w QGr(x, y) = ux2 − (u+ v − w)xy + vy2

When Q is a nondegenerate indefinite form, Conway defines the river of Q to be

the set of edges which separate a positive value from a negative value in the topograph of

Q. Since all values on the topograph of Q must be positive or negative, the river cannot

branch or terminate. The climbing principle implies uniqueness of the river. Thus the

river is a set of edges comprising a single endless line. Bounding the values adjacent to

the river implies periodicity of values adjacent to the river, and thus the infinitude of

solutions to Pell’s equation. This is described in detail in [2]. Riverbends – cells with a

river as drawn below – correspond to Gauss’s reduced forms in the equivalence class of

Q.

u > 0

v < 0
e < 0 f > 0

u > 0

v < 0
e > 0 f < 0

The existence of riverbends gives a classical bound, by an argument we learned from

Gordan Savin.

Theorem 33. If Q is a nondegenerate indefinite BQF, then the minimum nonzero value

µQ of Q satisfies |µQ| ≤
√

∆/5.

Proof. At a riverbend, one finds ∆ = (u− v)2− ef = u2 + v2−uv− vu− ef , the sum of

five positive integers. It follows that one of u2, v2,−uv,−vu,−ef must be bounded by

∆/5. Among |u|, |v|, |e|, |f |, one must be bounded by
√

∆/5.
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Figure 1.3: The topograph of Q(x, y) = x2 − 3y2, exhibiting a periodic river. Solutions

to Pell’s equation x2 − 3y2 = 1 are found along the riverbank.
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Chapter 2

Dilinear groups

The goal of this chapter is to prove there is an isomorphism from the Coxeter

group (2σ,∞) to the arithmetic group PDL2(Rσ) = DL2(Rσ)/{±1} when σ = 2, 3.

This isomorphism was what made us look for applications of Coxeter groups to arith-

metic. Here we introduce the dilinear group DL2(Rσ), describe its generators and prove

the desired result.

2.1 Dilinear algebra

Definition 34. Let σ > 1 be a square-free positive integer, and let Rσ = Z[
√
σ] be

the quadratic ring of discriminant 4σ. We define the dilinear group DL2(Rσ) to be the

group of all matrices



a b

c d


 ∈ GL2(Rσ) such that (a, d ∈ Z·√σ and b, c ∈ Z) or (a, d ∈ Z and b, c ∈ Z·√σ).

Moreover, we define PDL2(Rσ) = DL2(Rσ)/{±1}.
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Notation 35. Let DL−2 (Rσ) be the subset of DL2(Rσ) consisting of matrices with a, d ∈

Z · √σ and b, c ∈ Z and let DL+
2 (Rσ) be the subset of DL2(Rσ) consisting of matrices

with a, d ∈ Z and b, c ∈ Z · √σ.

Remark 36. DL+
2 (Rσ) is an index-two (hence normal) subgroup ofDL2(Rσ) andDL−2 (Rσ)

is its nontrivial coset. Morevoer, DL+
2 (Rσ) is GL2(Q(

√
σ))-conjugate to a congruence

subgroup of GL2(Z): if g = diag(1,
√
σ), then

gDL+
2 (Rσ)g−1 = Γ0(σ) :=








α β

γ δ


 ∈ GL2(Z) : γ ∈ σZ




.

Lemma 37. Suppose that u, v ∈ Z. Then

GCD(u, v
√
σ) = 1 in Rσ if and only if GCD(u, σv) = 1 in Z.

Proof. Recall that GCD(u, v
√
σ) = 1 in Rσ means that the pair {u, v√σ} generates the

unit ideal in Rσ. That is, there exist x+ y
√
σ, s+ r

√
σ ∈ Rσ such that

(x+ y
√
σ)u+ (s+ r

√
σ)v
√
σ = 1,

which we can rewrite as

(xu+ rσv) + (yu+ sv)
√
σ = 1.

This is equivalent to xu+ rvσ = 1 and yu+ sv = 0. In other words, there exist

x, r ∈ Z such that xu+ r(σv) = 1. That is, GCD(u, σv) = 1 in Z.

Definition 38. A divector over Rσ will mean a vector in R2
σ of red or blue type. Red

divectors are those of the form (u, v
√
σ) for some u, v ∈ Z. Blue divectors are those of
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the form (u
√
σ, v) for some u, v ∈ Z. Let Rdi

σ denote the set of divectors and let Rred
σ

and Rblue
σ denote, respectively, its subsets of red and blue divectors.

A red divector (u, v
√
σ) is called primitive if GCD(u, σv) = 1. A blue divector

(u
√
σ, v) is called primitive if GCD(uσ, v) = 1.

Theorem 39. The dilinear group DL2(Rσ) acts (by matrix multiplication) transitively

on the set of primitive divectors, and its subgroup DL+
2 (Rσ) acts transitively on the set

of primitive red (or blue) divectors.

Proof. To see that DL2(Rσ) acts on the set of primitive divectors, note that a matrix

in DL2(Rσ) is invertible and its determinant is an integer. Hence a matrix in DL2(Rσ)

has determinant equal to ±1 and thus it sends primitive divectors to primitive divectors.

It remains to prove that the action of DL2(Rσ) on primitive divectors is transi-

tive. Since the matrix




0 1

−1 0


 ∈ DL2(Rσ) swaps primitive red and blue divectors,

it suffices to show that DL+
2 (Rσ) acts transitively on the set of primitive red vectors.

Let (u, v
√
σ) be a primitive red divector. Since GCD(u, σv) = 1, there exist

s, t ∈ Z such that su− tvσ = 1 and



u t
√
σ

v
√
σ s


 ·

(
1

0

)
=

(
u

v
√
σ

)
.

In other words, for any primitive red divector (u, v
√
σ) there exists a matrix

M ∈ DL+
2 (Rσ) such that M ·

(
1
0

)
=
(

u
v
√
σ

)
.

Remark 40. The rows and columns of a matrix in DL2(Rσ) are primitive divectors.
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2.2 Generators for PDL2(R2) and PDL2(R3)

When σ = 2 or σ = 3, Johnson and Weiss [5, §4] present PDL2(Rσ) by

generators and relations, giving an isomorphism between PDL2(Rσ) and the Coxeter

group (2σ,∞). In this section we give an algebraic proof of their claim about the set of

generators for the dilinear groups.

Theorem 41. If σ = 2 or σ = 3, then DL2(Rσ) is generated by the triple of matrices,

r0 =



−1 0

0 1


 , r1 =



−1 0

√
σ 1


 , r2 =




0 1

1 0


 .

We will use the modified division algorithm for integers (which gives the re-

mainder of least absolute value) to help us determine the quotient and remainder when

dividing a by b
√
σ or a

√
σ by b, where a, b ∈ Z.

Lemma 42 (Division with remainder in Z t Z
√
σ). Let σ = 2, 3.

(a) For all a ∈ Z, b
√
σ ∈ Z

√
σ, b 6= 0, there exist q

√
σ ∈ Z

√
σ, r ∈ Z such that

a = q
√
σ · b√σ + r and |r| < |b√σ|.

(b) For all a
√
σ ∈ Z

√
σ, b ∈ Z, b 6= 0 there exist q

√
σ, r
√
σ ∈ Z

√
σ such that

a
√
σ = q

√
σ · b+ r

√
σ and |r√σ| < |b|.

Proof. (a) By the modified division algorithm, given integers a and bσ with b 6= 0

there exist q, r ∈ Z such that a = q · bσ + r and |r| ≤ | bσ2 |. Then we obtain
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a = q
√
σ · b√σ + r by simply rewriting σ. Moreover, since σ

2 <
√
σ for σ = 2, 3,

we get that |r| ≤ | bσ2 | < |b
√
σ|.

(b) By the modified division algorithm, given a ∈ Z and b ∈ Z, b 6= 0, there exist

q, r ∈ Z such that a = q · b + r and |r| ≤ | b2 |. Then we get a
√
σ = q

√
σ · b + r

√
σ

by simply multiplying both sides by
√
σ. Moreover, since

√
σ

2 < 1 for σ = 2, 3, we

get that |r√σ| ≤ | b
√
σ

2 | < |b|.

Definition 43. For a red divector αr = (u, v
√
σ) and a blue divector αb = (u

√
σ, v) we

define

size(αr) = max(|u|, |v√σ|) and size(αb) = max(|u√σ|, |v|).

We can now give the proof of the main result of this section.

Proof. (of Theorem 41)

Let γ =




a b

c d


 ∈ DL2(Rσ). Then either γ ∈ DL+

2 (Rσ) or γ ∈ DL−2 (Rσ).

We start by writing down the effect of multiplying γ from the left by some

elements of the subgroup generated by r0, r1 and r2:

• r0 changes sign in the first row,

• r2 switches rows,

• r1r0 =




1 0

−√σ 1


 subtracts

√
σ times the first row from the second row, and
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• r2r1r0r2 =




1 −√σ

0 1


 subtracts

√
σ times the second row from the first row.

Since r2 transforms a matrix in DL−2 (Rσ) into a matrix in DL+
2 (Rσ), it is

enough to consider only matrices in DL+
2 (Rσ). Let γ =




u x
√
σ

v
√
σ y


 ∈ DL

+
2 (Rσ).

Let α =
(

u
v
√
σ

)
denote the first column of γ. We can assume u and v are

non-negative integers since we can use r0 and r2 to change sign. Moreover, since γ ∈

GL2(Rσ), the entries in a column of γ cannot be both zero.

If either of the entries of the primitive divector α is zero then we must have

α =
(

1
0

)
. This means that γ is a matrix of the form




1 x
√
σ

0 y


. Since its determinant

must be in Z∩Z[
√
σ]× = {±1} we have y = ±1. Thinking about the effect of r0, r2 and

powers of r1r0 on a matrix we can easily write

(r1r0)xr2




1 x
√
σ

0 1


 =




1 0

0 1


 or (r1r0)xr0r2




1 x
√
σ

0 −1


 =




1 0

0 1


 .

That is,




1 x
√
σ

0 1


 = r2(r1r0)−x and




1 x
√
σ

0 −1


 = r2r0(r1r0)−x.

Now we assume that both entries of α =
(

u
v
√
σ

)
are nonzero. We want to show

that we can multiply α on the left by enough copies of r0, r1 and r2 to obtain a vector

of smaller size. If we can reduce the size then we can eventually obtain the divector

(
1
0

)
of smallest possible size (size one). This means that eventually multiplication on
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the left by enough copies of r0, r1 and r2 gives a matrix of the form




1 x
√
σ

0 y


. We

showed in the above paragraph how this type of matrix can be written as a product of

the matrices r0, r1 and r2.

If v
√
σ > u, by Lemma 42 there exist q

√
σ, r
√
σ ∈ Z

√
σ such that

v
√
σ = q

√
σ · u+ r

√
σ and |r√σ| < |u|.

Then

(r1r2)qα =

(
u

v
√
σ − q√σ · u

)
=

(
u

r
√
σ

)
= β and size(β) < size(α).

If v
√
σ < u, by Lemma 42 there exist q

√
σ ∈ Z

√
σ, r ∈ Z such that

u = q
√
σ · v√σ + r and |r| < |v√σ|.

Then

(r0r1r2r0)qα =

(
u− q√σ · v√σ

v
√
σ

)
=

(
r

v
√
σ

)
= β and size(β) < size(α).

2.3 Dilinear groups and Coxeter groups

Replacing each matrix ri in Theorem 41 by the equivalence class ρi of matrices

±ri we obtain the following result.

Theorem 44. If σ = 2 or σ = 3, then PDL2(Rσ) is generated by

ρ0 =



−1 0

0 1


 , ρ1 =



−1 0

√
σ 1


 , ρ2 =




0 1

1 0


 .

24



Recall that the Coxeter group (2σ,∞) is the group generated by s0, s1, s2,

subject to the relations

s2
0 = s2

1 = s2
2 = 1, (s1s2)2σ = 1, (s0s2)2 = 1.

Define φ : (2σ,∞)→ PDL2(Rσ) by s0 7→ ρ0, s1 7→ ρ1 and s2 7→ ρ2. It is easy to

check that the generators of PDL2(Rσ) satisfy the Coxeter relations ρ2
0 = ρ2

1 = ρ2
2 = 1,

(ρ1ρ2)2σ = 1, (ρ0ρ2)2 = 1. Thus φ is a surjective homomorphism.

The goal of this section is to show that φ is an isomorphism if σ = 2 or σ = 3.

To accomplish this, we will show that ρ0, ρ1 and ρ2 act as reflections in the sides of a

hyperbolic triangle.

LetH = {x+iy | y > 0} denote the Poincaré upper half plane. Recall that lines

in H are Euclidean semicircles with centres on x-axis or Euclidean lines perpendicular

to the x-axis.

A hyperbolic reflection is either a Euclidean reflection in a vertical line or an

inversion centered at some point on the x-axis (when the hyperbolic line is represented

by a semicircle).

The inversion with respect to the circle C with center (c, 0) and radius r is the

mapping f : C ∪ {∞} → C ∪ {∞} interchanging the points c and ∞, and such that for

each point z ∈ C \ {c}, f(z) = w lies in the line determined by z and c, in such a way

that

|z − c| · |w − c| = r2.

The circle C can be recovered as the fixed point set for f . The general formula for the
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inversion f across a circle with radius r and center (c, 0) is given by:

f(z) = r2(z − c)−1 + c.

Let Isom(H) denote the group of isometries of the hyperbolic plane. Let

PS∗L2(R) = S∗L2(R)/{±1} where S∗L2(R) is the group of real matrices of determinant

±1. For z ∈ H and γ =



a b

c d


 ∈ PGL2(R) define

γ(z) =





(az + b)(cz + d)−1 if det(γ) > 0

(az̄ + b)(cz̄ + d)−1 if det(γ) < 0.

This defines an isomorphism from PS∗L2(R) to Isom(H) (Theorem 1.3.1, [6]).

Since PDL2(Rσ) is a subgroup of PS∗L2(R), any γ ∈ PDL2(Rσ) is uniquely determined

by the corresponding isometry of the hyperbolic plane.

The following equations show that ρ0 acts as the reflection in the y-axis, ρ1

acts as the inversion across the circle of radius 1√
σ
centered at

(
− 1√

σ
, 0
)
and ρ2 acts as

the inversion across the unit circle centered at origin.

ρ0(z) =



−1 0

0 1


 z = −z̄,

ρ1(z) =



−1 0

√
σ 1


 z = (−z̄)(√σz̄ + 1)−1 =

(
1√
σ

)2(
z +

1√
σ

)−1

− 1√
σ
,

ρ2(z) =




0 1

1 0


 z = (z̄)−1.

26



More precisely, ρ0, ρ1 and ρ2 act as reflections in the sides of a (90
σ )◦− 90◦− 0◦

hyperbolic triangle. See the triangle OAB in Figure 2.1 and Figure 2.2 in the case σ = 2

and σ = 3, respectively.

Figure 2.1: 45◦ − 90◦ − 0◦ triangle

Let T denote the hyperbolic triangle OAB and let S0 = OA, S1 = OB and

S2 = AB denote its sides. Then ρi corresponds to the reflection in the side Si for

i ∈ {0, 1, 2}. The angles of T are θ(S1, S2) = π/2σ, θ(S0, S2) = π and θ(S0, S1) = 0.

Since they are all submultiples of π, Theorem 8 implies that the group generated by the

reflections in the sides of the triangle T (i.e PDL2(Rσ)) is a discrete reflection group

with respect to T .

Moreover, for each pair of indices i, j such that Si and Sj are adjacent, let

kij = π/θ(Si, Sj). That is, k12 = π/θ(S1, S2) = 2σ, k02 = π/θ(S0, S2) = 2 and k01 =
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Figure 2.2: 30◦ − 90◦ − 0◦ triangle

π/θ(S0, S1) =∞. By Theorem 9,

〈Si | S2
i = 1, (SiSj)

kij = 1〉

is a group presentation for PDL2(Rσ) under the mapping Si 7→ ρi.

Thus the map φ : (2σ,∞) → PDL2(Rσ) defined by φ(sj) = ρj for j = 0, 1, 2,

(described in the beginning of this section) is an isomorphism. This proves the following

result.

Theorem 45. If σ = 2 or σ = 3, then φ : (2σ,∞)→ PDL2(Rσ) given by

s0 7→ ρ0, s1 7→ ρ1 and s2 7→ ρ2

is an isomorphism.
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Chapter 3

Dilinear Topograph

3.1 Divectors, dibases and pinwheels

In this section we define a “dilinear” variant of Conways’s topograph and prove

basic facts about it. Assume σ = 2 or σ = 3.

Definition 46. The dilinear topograph is the incidence system of type I = {0, 1, 2},

consisting of:

• Faces (elements of type 2) are primitive lax divectors over Rσ, i.e., primitive di-

vectors modulo ±1.

• Edges (elements of type 1) are lax dibases: unordered pairs of lax divectors gener-

ating R2
σ as an Rσ-module.

• Points (elements of type 0) are lax pinwheels: cyclically ordered 2σ-tuples of lax

divectors such that any adjacent pair forms a lax dibasis.
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Two elements are incident if one contains another.

Remark 47. • Note that ±(
√

2,−1) and ±(−
√

2, 1) are the same as lax divectors.

We prefer ±(
√

2,−1) over ±(−
√

2, 1). More precisely, when writing a lax divector

we prefer to make the first entry positive or zero. When the first entry is zero, we

prefer the second entry to be positive. This means we prefer ±(0, 1) over ±(0,−1).

• Let (±~v,±~w) be an ordered lax dibasis. This means that the divectors ~v and ~w

have opposite color and form the columns of a matrix in DL2(Rσ) of determinant

±1. LetM(~v, ~w) denote this matrix and letM[~v, ~w] be its image in PDL2(Rσ).

• Given an ordered lax dibasis (±~v,±~w) there are four associated matrices inDL2(Rσ):

M(~v, ~w),M(~v,−~w),M(−~v, ~w) andM(−~v,−~w). These four matrices correspond

to two distinct elementsM[~v, ~w] andM[−~v, ~w] in PDL2(Rσ).

Proposition 48. The group PDL2(Rσ) acts transitively on the set of lax dibases.

Proof. Since the proof will be the same for any choice of order and signs of the divectors

in a lax dibasis {±~v,±~w}, it is enough to prove the result for the ordered dibasis (~v, ~w).

We need to show there exists a matrix G ∈ PDL2(Rσ) such that the "home

dibasis" ((1, 0), (0, 1)) is sent to (~v, ~w) under the action of G. That is, G sends (1, 0) to

~v and G sends (0, 1) to ~w. Equivalently,

G · M [(1, 0), (0, 1)] =M [~v, ~w] .

Note thatM [(1, 0), (0, 1)] is the identity in PDL2(Rσ). Thus G =M [~v, ~w] .
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Theorem 39 proves that the dilinear group acts transitively on the set of prim-

itive divectors, which implies that PDL2(Rσ) acts transitively on the set of faces of the

dilinear topograph. The above result proves that PDL2(Rσ) acts transitively on the set

edges.

Proposition 49. If ±~v is a primitive lax divector then there exist infinitely many lax

primitive divectors ±~w such that {±~v,±~w} is a lax dibasis and these have the form

~w = ~w0 + n
√
σ · ~v for n ∈ Z.

Proof. Let ±~v = (a, b
√
σ) be a lax primitive red divector. Then GCD(a, σb) = 1 in

Z. Assume that {±~v = (a, b
√
σ),±~w = (x

√
σ, y)} is a lax dibasis (i.e. the regions

corresponding to ±~v and ±~w share an edge in the topograph). Then

∣∣∣∣∣∣∣∣

a x
√
σ

b
√
σ y

∣∣∣∣∣∣∣∣
= ±1

implies

(−σb)x+ (a)y = ±1.

Since GCD(a, σb) = 1 this linear Diophantine equation has a solution. If (x0, y0) is a

solution of this equation then ± ~w0 = (x0
√
σ, y0) is a blue divector such that {±~v,± ~w0}

is a lax dibasis. Since the other solutions to the above equation are of the form (x0 +

na, y0 +n ·σb) for some n ∈ Z the vectors of the form ±~w = ((x0 +na)
√
σ, y0 +n ·σb) =

(x0

√
σ, y0)︸ ︷︷ ︸
~w0

+n
√
σ (a, b

√
σ)︸ ︷︷ ︸

~v

form a lax dibasis together with ~v.

This shows that every face is incident with infinitely many edges, and these

form an endless line.
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Proposition 50. Let ~v and ~w be two divectors forming a dibasis. Then there are two

pinwheels containing the lax dibasis {±~v,±~w}. These two pinwheels are:

σ = 2 :
(
±~v,±~w,±(~v + ε~w

√
2),±(~w + ε~v

√
2)
)

σ = 3 :
(
±~v,±~w,±(~v + ε~w

√
3),±(2~w + ε~v

√
3),±(2~v + ε~w

√
3),±(~w + ε~v

√
3)
)
,

where ε = 1 and ε = −1.

Proof. Since the group PDL2(Rσ) acts transitively on the set of primitive lax divectors

it suffices to assume ±~v = ±(1, 0) and ±~w = (0, 1).

Consider the case σ = 2. Let {±(1, 0),±(0, 1),±~u,±~t} be a pinwheel containing

the lax dibasis {±(1, 0),±(0, 1)}. Note that ~u and ±(1, 0) both form a lax dibasis with

±(0, 1), and these dibases are adjacent lines in the dilinear topograph (they share the

pinwheel as an endpoint). By Proposition 49, ~u has the form ±((1, 0) + ε
√

2(0, 1)) for

ε ∈ {−1, 1}. The same reasoning shows that ~t has the form ±((0, 1) + ε′
√

2(1, 0)) for

ε′ ∈ {−1, 1}.

Since the divectors ~u and ~t are adjacent, they form the columns of a matrix in

DL2(Rσ) of determinant ±1. Thus

∣∣∣∣∣∣∣∣

1 ε′
√

2

ε
√

2 1

∣∣∣∣∣∣∣∣
= ±1, which implies 2ε′ε = 1±1. Since

ε, ε′ ∈ {−1, 1}, we must have ε = ε′. The case σ = 3 can be proved in a similar way.

The above result proves that every edge is incident to two points. The chambers

of the dilinear topograph are triples (±~v,D, ℘) with ±~v a lax divector, D = {±~v,±~w}

a lax dibasis containing ±~v and ℘ a pinwheel containing D.
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±(1, 0) ±(
√
2, 1)

±(1,
√
2)±(0, 1)±(1,−

√
2)

±(
√
2,−1)

(a) σ = 2

±(
√
3,−1)

±(1,−
√
3)

±(1, 0)

±(0, 1)

±(
√
3, 1)

±(1,
√
3)

±(
√
3, 2)

±(2,
√
3)±(2,−

√
3)

±(
√
3,−2)

(b) σ = 3

Figure 3.1: Cell in the dilinear topograph containing the home lax dibasis.

Remark 51. By Proposition 50 the home lax dibasis (±(1, 0),±(0, 1)) is contained in

exactly two pinwheels, which can be seen in Figure 3.1. The pinwheel we placed on

the right side will be called the home lax pinwheel and it will be denoted ℘0. More

precisely,

℘0 =





(±(1, 0),±(0, 1),±(1,
√

2),±(
√

2, 1)) σ = 2

(±(1, 0),±(0, 1),±(1,
√

3),±(
√

3, 2),±(2,
√

3),±(
√

3, 1)) σ = 3.

The flag F0 = (v0 = ±(1, 0),D0 = (±(1, 0),±(0, 1)), ℘0) containing the home

lax pinwheel will be called the home flag.

By Proposition 50 the ordered dibasis D = (±v,±w) is contained in exactly two

pinwheels starting with±~v. In the σ = 2 case, ℘+ =
(
±~v,±~w,±(~v + ~w

√
2),±(~v

√
2 + ~w)

)
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and ℘− =
(
±~v,±~w,±(~v − ~w

√
2),±(~v

√
2− ~w)

)
. Similarly, in the σ = 3 case,

℘+ =
(
±~v,±~w,±(~v + ~w

√
3),±(~v

√
3 + 2~w),±(2~v + ~w

√
3),±(~v

√
3 + ~w)

)

and ℘− =
(
±~v,±~w,±(~v − ~w

√
3),±(~v

√
3− 2~w),±(2~v − ~w

√
3),±(~v

√
3− ~w)

)
.

±~v ±(~v
√

2 + ~w)

±(~v + ~w
√

2)±~w±(~v − ~w
√

2)

±(~v
√

2 − ~w)

(a) σ = 2

±(~v
√
3− ~w)

±(~v − ~w
√
3)

±~v

±~w

±(~v
√
3 + ~w)

±(~v + ~w
√
3)

±(~v
√
3 + 2~w)

±(2~v + ~w
√
3)±(2~v − ~w

√
3)

±(~v
√
3− 2~w)

(b) σ = 3

Figure 3.2: Cell in the dilinear topograph containing the lax dibasis (±v,±w) with the

pinwheel ℘+ placed on the right side.

Proposition 52. The group PDL2(Rσ) acts transitively on the set of chambers of the

dilinear topograph.

Proof. Let F = (±~v,D = (±~v,±~w), ℘) be a chamber (i.e a flag of type I = {0, 1, 2}).

We need to show there exists a matrix G ∈ PDL2(Rσ) such that the flag F is sent

to the home flag F0 = (v0,D0, ℘0) under the action of G. It is easy to check that the

matrixM[~v, ~w]−1 sends ±~v to v0 and D to D0. Moreover, it must send ℘ to one of the
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endpoints of the edge D (since the group action preserves incidence). More precisely, it

sends ℘ to ℘0 or the other endpoint ℘−0 . In the first case, G =M[~v, ~w]−1 is the desired

matrix. In the second case, G = ρ0M[~v, ~w]−1. Here ρ0 is the reflection matrix defined

in Section 2.3.

In the beginning of this section we defined the dilinear topograph as an inci-

dence system. The following result shows that it is an incidence geometry.

Proposition 53. Every maximal flag of the dilinear topograph is a chamber.

Proof. A maximal flag is a flag not properly contained in any other flag. That means

we need to show that every partial flag can be completed to a chamber. More precisely,

we need to make sure that the following hold:

(a) Every vertex is contained in a chamber.

(b) Every edge is contained in a chamber.

(c) Every face is contained in a chamber.

(d) Every pair (v, e) of a vertex incident with an edge can be completed to a chamber.

(e) Every pair (v, f) of a vertex incident with a face can be completed to a chamber.

(f) Every pair (e, f) of an edge incident with a face can be completed to a chamber.

To see why (a) is true note that a vertex v is a pinwheel. We can take any lax

dibasis e contained in the pinwheel v and obtain a (nonmaximal) flag (v, e). Then take

any primitive lax divector within e. That gives a face f for which (v, e, f) is a chamber.
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Since an edge is a lax dibasis, (b) follows from Proposition 50. By Proposition

49, any primitive lax divector can be completed to a lax dibasis. Since a face f is a

primitive lax divector, (c) follows from Proposition 49 and Proposition 50. The claims

(d), (e), (f) are easy to check.

3.2 Coxeter geometry

Assume σ = 2 or σ = 3. In the previous section we showed that the dilinear

topograph is an incidence geometry. Let X0 denote its set of points, X1 the set of edges,

and X2 the set of faces. Let X = X0 t X1 t X2. By a slight abuse of notation, we

will also write X to denote both the set of elements of the incidence geometry and the

incidence geometry itself.

Let (W,S) denote the Coxeter system with W = (2σ,∞) and S = {s0, s1, s2}.

Recall that W i denotes the parabolic subgroup of W generated by s ∈ S \ {si}. Let

XW = Γ(W, {W 0,W 1,W 2}) denote its coset incidence geometry. By slight abuse of

notation, we also let XW denote the underlying set of the geometry. That is,

XW =
2⊔

i=0

Xi
W where Xi

W = W/W i.

We proved in Section 2.3 that φ : (2σ,∞) → PDL2(Rσ) given by φ(sj) = ρj

for j = 0, 1, 2, is an isomorphism. Recall that

ρ0 =



−1 0

0 1


 , ρ1 =



−1 0

√
σ 1


 , ρ2 =




0 1

1 0


 .
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DRAFT

3. Real quadratic arithmetic

In (7, §4), Johnson and Weiss give an explicit realization of
the Coxeter groups of types (4, Œ) and (6, Œ) as arithmetic
groups. We describe this briefly here. Let ‡ = 2 or ‡ = 3, and
R‡ = Z[

Ô
‡]. The dilinear group (our own name) DL2(R‡) is

the group of all matrices
3

a b
c d

4
œ GL2(R‡) such that

(a, d œ Z ·
Ô

‡ and b, c œ Z) or (a, d œ Z and b, c œ Z ·
Ô

‡).

Let DL+
2 (R‡) denote its subgroup consisting of matrices

with a, d œ Z and b, c œ Z ·
Ô

‡. While DL2(R‡) is a bit mys-
terious, DL+

2 (R‡) is GL2(Q(
Ô

‡))-conjugate to a congruence
subgroup of GL2(Z): if g = diag(1,

Ô
‡), then

gDL2(R‡)g≠1 = �0(‡) :=
;3

– —
“ ”

4
œ GL2(Z) : “ œ ‡Z

<
.

We thank the referee for this insight.
Define P DL2(R‡) = DL2(R‡)/{±1}. Johnson and Weiss

present P DL2(R‡) by generators and relations, giving an iso-
morphism P DL2(R‡) ≥= (2‡, Œ). Thus we expect arithmetic
interpretations of the geometries of types (4, Œ) and (6, Œ).

A. Arithmetic flags. We define a “dilinear” variant of Con-
ways’s topograph as follows. As always, ‡ = 2 or ‡ = 3.

• Faces correspond to primitive lax divectors: ordered pairs
(u, v

Ô
‡) with u, v œ Z and GCD(u, ‡v) = 1 are called

primitive red divectors. Ordered pairs (u
Ô

‡, v) with
u, v œ Z and GCD(‡u, v) = 1 are called primitive blue
divectors. For laxness, we consider divectors modulo sign.

• Edges correspond to lax dibases: unordered pairs of lax
divectors generating R2

‡ as an R‡-module. This implies
that the divectors have opposite color, and form the rows
of a matrix in DL2(R‡).

• Points correspond to lax pinwheels: cyclically ordered 2‡-
tuples of lax divectors such that any adjacent pair forms
a lax dibasis (and hence has opposite color).

Theorem 5. The geometry of primitive lax divectors, lax
dibases, and pinwheels for R‡ is equivariantly isomorphic to
the Coxeter geometry of type (2‡, Œ).
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Fig. 5. The Coxeter geometries of type (4, Œ) and (6, Œ) are labeled by primitive
lax divectors for Z[

Ô
2] and Z[

Ô
3], respectively. Around each point is a pinwheel.

B. Binary quadratic diforms. Fix ‡ = 2 or ‡ = 3. A binary
quadratic diform (BQD) is a function of the form

Q(x, y) = ax2 + b
Ô

‡xy + cy2, where a, b, c œ Z.

We restrict (x, y) to be a divector in R2
‡, so the values of Q are

integers. We define the discriminant of Q by � = ‡(b2‡ ≠4ac).
Restricting Q to red and blue divectors yields a pair

Qred, Qblue of BQFs over Z of discriminant �; explicitly,

Qred(u, v) := Q(u, v
Ô

‡) = au2 + b‡uv + c‡v2,

Qblue(u, v) := Q(u
Ô

‡, v) = a‡u2 + b‡uv + cv2.

Define another BQF of discriminant �,

A�(u, v) =
;

‡u2 ≠ �
4‡

v2 if �‡≠1 © 0 mod 4;
‡u2 + ‡uv ≠ �≠‡2

4‡
v2 if �‡≠1 ”© 0 mod 4.

Write Cl(�) for the group of SL2(Z)-equivalence classes of
primitive BQFs of discriminant �, following Bhargava (8, The-
orem 1). Then [A�] is the unique such class which represents
‡; since A� is ambiguous, [A�]2 = 1 in the class group.

Theorem 6. Suppose that a, b‡, and c are pairwise coprime.
In Cl(�), one has [Qred] = [A�] · [Qblue]. Conversely, if
Q1, Q2 are primitive BQFs of discriminant �, and ‡ | �, and
[Q1] = [A�]·[Q2], there exists a BQD Q such that [Qred] = [Q1]
and [Qblue] = [Q2].

Proof. Dirichlet composition demonstrates that [Qred] ·
[Qblue]≠1 is a form of discriminant � that represents ‡. There-
fore [Qred] · [Qblue]≠1 = [A�] in Cl(�). For the converse, if Q1
is any BQF of discriminant �, then a bit of algebra su�ces to
cook up a BQD Q with [Qred] = [Q1]. If [Q1] = [A�]·[Q2], then
the identiity [Qred] = [A�] · [Qblue] implies that [Qblue] = [Q2].

The topograph of a BQD Q is obtained by replacing each
primitive lax divector by the corresponding value of Q. As
before, the discriminant is locally visible.

� =

I
(2u ≠ v)2 ≠ ef if ‡ = 2;
(3u ≠ v)2 ≠ ef = (4u≠3v)2≠mn

4 if ‡ = 3.
[1]

u f

f 0ve0

e

e

e0

u

v

f

f 0

n0
nm

m0

Fig. 6. Cells in the range topograph for ‡ = 2 (left) and ‡ = 3 (right).

Polarization for the quadratic form Q implies the following.

Theorem 7. At every cell in the topograph of Q, as in Figure
6, one finds arithmetic progressions as below.

‡ = 2: The triples (e, 2u + v, f) and (eÕ, u + 2v, f Õ) are arith-
metic progressions of the same step size.

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

Milea et al.

Figure 3.3: The geometry of primitive lax divectors, lax dibases, and pinwheels for Z[
√

2]

and Z[
√

3], respectively.

Recall that υ0 = ±(1, 0) denotes the home face, D0 = (±(1, 0),±(0, 1)) the

home edge and ℘0 the home vertex. The following lemma gives a description of the

stabilizer of the home vertex/edge/face.

Lemma 54. Let G = PDL2(Rσ) and let Gi denote the parabolic subgroup of G generated

by ρ ∈ {ρ0, ρ1, ρ2} \ {ρi}. The following hold:

(a) StabG(υ0) = G2

(b) StabG(D0) = G1

(c) StabG(℘0) = G0.

Proof. Let γ ∈ G. If γ =



u
√
σ x

v y
√
σ


 it is easy to see that it can’t be in StabG(υ0).
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If γ =




u x
√
σ

v
√
σ y


 ∈ StabG(υ0) then




u x
√
σ

v
√
σ y







0

1


 =



x
√
σ

y


 =




0

1


 . Since γ has determinant ±1 we get γ =




1 0

v
√
σ 1


, which we can write as

(r0r1)v. We have StabG(υ0) ⊆ 〈r0, r1〉 = G2 and we can check that r0, r1 ∈ StabG(υ0).

Thus (a) is proved. Similar arguments can be used to prove (b) and (c).

Theorem 55. The geometry X is isomorphic to the coset geometry XW of the Coxeter

group (2σ,∞).

Proof. We need to show there exist an isomorphism of incidence systems β : XW → X.

Since the set XW is the disjoint union of the sets X0
W , X

1
W and X2

W , the map β can be

described by a triple of maps β0 : X0
W → X0, β1 : X1

W → X1 and β2 : X2
W → X2.

Let x0 = ℘0 (home vertex), x1 = D0 (home edge) and x2 = v0 (home face).

Let i ∈ {0, 1, 2}. Given a coset wW i ∈ Xi
W , define βi : Xi

W → Xi by

βi(wW i) = φ(w)xi.

Since G = PDL2(Rσ) acts transitively on the set of vertices and φ is surjective

it follows that βi is surjective. Now we want to show βi is injective. Assume βi(w1W
i) =

βi(w2W
i) for some cosets w1W

i, w2W
i ∈ Xi

W . That is, φ(w1)xi = φ(w2)xi, which is

equivalent to φ(w−1
2 w1)xi = xi. In other words, φ(w−1

2 w1) ∈ StabG(xi) = Gi = φ(W i),

which implies w1W
i = w2W

i. Thus βi is a bijection.

Clearly β preserves the type. It remains to check that β preserves incidence.

That is, if two cosets of W are incident then their images under β are also incident. Let
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s, t ∈ {0, 1, 2} with s < t. If w′W s is incident to w′′
W t then w′W s ∩ w′′

W t 6= ∅. Let

w ∈ w′W s ∩ w′′
W t. That is, wW s = w′W s and wW t = w

′′
W t. Then βs(w′W s) =

βs(wW s) = φ(w)xs and βt(w′′
W t) = βt(wW t) = φ(w)xt. Since xt ⊂ xs, we also have

φ(w)xt ⊂ φ(w)xs. This shows that φ(w′)xs is incident to φ(w
′′
)xt.

We were able to show that not only is there an isomorphism of groups - from

the Coxeter group to the arithmetic group (dilinear group) - but there is an isomorphism

of geometries - from the Coxeter geometry to the geometry of arithmetic flags. The next

two chapters include applications to number theory.
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Chapter 4

Binary quadratic diforms

4.1 Diforms and their connection to pairs of BQFs

We introduce a special type of non-integral BQFs defined on the set of divectors

and show how they are connected to pairs of (integral) BQFs obtained by restricting to

red/blue divectors.

Definition 56. Let σ be a square-free positive integer. A binary quadratic diform

(BQD) is a function Q : Rdi
σ → Z of the form

Q(x, y) = ax2 + b
√
σxy + cy2, where a, b, c ∈ Z.

We define the discriminant of Q by ∆(Q) = σ(b2σ − 4ac).

We restrict (x, y) to be a divector in R2
σ, so the values of Q are integers.

Restricting Q to red and blue divectors yields a pair Qred, Qblue of BQFs over Z of
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discriminant ∆; explicitly,

Qred(u, v) := Q(u, v
√
σ) = au2 + bσuv + cσv2,

Qblue(u, v) := Q(u
√
σ, v) = aσu2 + bσuv + cv2.

Definition 57. We say Q is a primitive BQD if both Qred and Qblue are primitive BQFs.

Equivalently, GCD(a, σb, c) = 1 and σ divides neither a nor c.

Define another BQF of discriminant ∆,

A∆(u, v) =





σu2 − ∆
4σv

2 if ∆σ−1 ≡ 0 mod 4;

σu2 + σuv − ∆−σ2

4σ v2 if ∆σ−1 6≡ 0 mod 4.

Lemma 58. If Q is a primitive BQD of discriminant ∆, then A∆ is primitive too.

Proof. Assume GCD(a, σb, c) = 1 and σ divides neither a nor c.

Let σ = 2. Assume ∆σ−1 ≡ 0 mod 4. Then GCD(σ,− ∆
4σ ) = GCD(2, ac− b2

2 )

equals 1 or 2. Since 2 - ac, GCD(2, ac− b2

2 ) = 2 implies b2

2 is an odd integer. We get a

contradiction with b2 ≡ 0, 1 mod 4 for any b ∈ Z . Thus we must have GCD(σ,− ∆
4σ ) = 1.

Now assume ∆σ−1 6≡ 0 mod 4. When GCD(σ,−∆−σ2

4σ ) = GCD(2, 1−b2
2 − ac) = 2 we get

a contradiction with 1− b2 ≡ 0, 1 mod 4. This shows A∆ is primitive.

Let σ = 3. Assume ∆σ−1 ≡ 0 mod 4. Then GCD(σ,− ∆
4σ ) = GCD(3, ac− 3b2

4 )

equals 1 or 3. But GCD(3, ac− 3b2

4 ) = 3 implies ac ≡ 3b2

4 mod 3. We get a contradiction

since 3 - ac and 3b2

4 ≡ 0 mod 3. Thus we must have GCD(σ,− ∆
4σ ) = 1. This shows

A∆ is primitive in the case ∆σ−1 ≡ 0 mod 4. Similarly, it can be checked that A∆ is

primitive in the case ∆σ−1 6≡ 0 mod 4.
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Notation 59. Write Cl(∆) for the group of SL2(Z)-equivalence classes of primitive

BQFs of discriminant ∆, following Bhargava [7, Theorem 1]. If Q is a BQF of discrim-

inant ∆, write [Q] for its SL2(Z)-equivalence class.

A binary quadratic form Q(x, y) = ax2+bxy+cy2 is called ambiguous if its first

coefficient a divides its middle coefficient b. An ambiguous class is one which contains an

ambiguous form. The primitive ambiguous classes are those which are self-inverse under

composition. Since A∆ is an ambiguous form, its class in Cl(∆) satisfies [A∆]2 = 1. We

give another characterization of the class of A∆ in the following lemma. We will show

that [A∆] is the unique class in Cl(∆) which represents σ, when σ | ∆.

Lemma 60. If Q is a BQF of discriminant ∆ that represents σ, and σ | ∆, then

[Q] = [A∆].

Proof. If Q represents σ, then [Q] = [σu2 + buv + cv2] for some b, c ∈ Z. Since σ is a

square-free integer and σ | ∆ = b2 − 4σc we have that b is a multiple of σ too. Thus

[Q] = [σu2 + σβuv + cv2] for some β. Since this is an ambiguous class it must be equal

to either [σu+ kv2] or [σu2 + uv + kv2] for some k ∈ Z, depending on the discriminant.

If [Q] = [σu + kv2] we have ∆ = −4σk (i.e. k = −∆/4σ) and ∆σ−1 ≡ 0 mod

4. If [Q] = [σu2 + σuv + kv2], then ∆ = σ2 − 4σk (i.e. k = −(∆ − σ2)/(4σ)) and

∆σ−1 ≡ σ − 4k 6≡ 0 mod 4. Thus [Q] = [A∆].

Notation 61. Let SDL+
2 (Rσ) be the subgroup of DL+

2 (Rσ) consisting of matrices of

determinant one.
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Definition 62. We say that two diforms Q,Q′ are SDL+
2 (Rσ)-equivalent if there exists

η ∈ SDL+
2 (Rσ) satisfying Q′(~v) = Q(η · ~v) for all divectors ~v. We write [Q]σ = [Q′]σ

when the diforms Q and Q′ are SDL+
2 (Rσ)-equivalent.

Proposition 63. [Q]σ = [Q′]σ implies [Qred] = [Q′red] and [Qblue] = [Q′blue].

Proof. Let g = diag(1,
√
σ). Then

Qred(u, v) = Q(u,
√
σv) = Q(g · (u, v)).

Let M denote the Gram matrix of the quadratic form Q, and Mred the Gram matrix

of the quadratic form Qred (viewing them as quadratic forms R2 → R). Then we have

Qred(u, v) = (u v) ·Mred ·
(
u
v

)
and Q(g · (u, v)) =

(
g ·
(
u
v

))t ·M ·g ·
(
u
v

)
. Note that gt = g.

Thus

Mred = g ·M · g.

Now assume [Q]σ = [Q′]σ. That is, there exists η ∈ SDL+
2 (Rσ) such that

Q′(~w) = Q(η · ~w) for all divectors ~w. The Gram matrix of Q′ is

M ′ = ηtMη.

The Gram matrix of Q′red is

M ′red = gM ′g = g(ηtMη)g = gηtg−1(gMg)g−1ηg = gηtg−1Mredg
−1ηg.

Thus M ′red = (g−1ηg)tMredg
−1ηg. So to show that Q′red is SL2(Z)-equivalent to Qred,

we must check that g−1ηg ∈ SL2(Z). Let η =




u x
√
σ

v
√
σ y


 ∈ DL+

2 (Rσ). Then
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g−1ηg =




1 0

0 1√
σ







u x
√
σ

v
√
σ y







1 0

0
√
σ


 =




u xσ

v y


 ∈ SL2(Z).

The following result shows how the pair Qred, Qblue of BQFs can be related

through A∆ whenever σ | ∆.

Theorem 64. Given a primitive BQD Q(x, y) = ax2 + b
√
σxy+ cy2 of discriminant ∆,

one has [Qred] = [A∆] · [Qblue] in Cl(∆). Conversely, if Q1, Q2 are primitive BQFs of

discriminant ∆, and σ | ∆, and [Q1] = [A∆] · [Q2], there exists a primitive BQD Q such

that [Qred] = [Q1] and [Qblue] = [Q2].

Proof. The identity [Qred] = [A∆] · [Qblue] can be proved using a Bhargava cube.

0

0

01

−a
−c

−σ

bσ

Let (Mi, Ni) be the partition of this cube into a pair of two-by-two matrices, in a front-

back, left-right, and top-bottom fashion according to whether i = 1, 2, 3 respectively,

as in [7, §2.1]. From these matrices, Bhargava constructs a triple of BQFs given by

Qi(u, v) = −det(Miu−Niv). More precisely,

Q1(u, v) = au2 + bσuv + cσv2;

Q2(u, v) = cu2 + bσuv + aσv2;

Q3(u, v) = σu2 + bσuv + acv2.
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Since Q(x, y) = ax2 + b
√
σxy + cy2 if a primitive diform of discriminant ∆, the BQFs

Q1, Q2 and Q3 are primitive and have discriminant ∆ also. By [7, Theorem 1], we have

[Q1] · [Q2] · [Q3] = 1 in Cl(∆). Observe that Q1 is precisely Qred. Next, observe that Q2

is related to Qblue by switching u and v; it follows that [Q2] = [Qblue]
−1. By Lemma 60,

[Q3] = [A∆]. Since [A∆]2 = 1, we have

[Qred] = [A∆] · [Qblue] and [Qblue] = [A∆] · [Qred].

For the converse, suppose that Q1 and Q2 are primitive BQFs of discriminant

∆, σ | ∆, and [Q2] = [A∆] · [Q1]. If Q1 is any BQF of discriminant ∆, then we want to

show a primitive BQD Q with [Qred] = [Q1] can be defined. Since [Q2] = [A∆] · [Q1],

the identity [Qblue] = [A∆] · [Qred] will imply that [Qblue] = [Q2].

Write Q1(u, v) = αu2 + βuv + γv2, so σ | β2 − 4αγ. If σ | γ, then σ | β, and

Q1 = Qred for the diform

Q(x, y) = αx2 + βσ−1√σxy + γσ−1y2.

If σ - γ, then there exists an integer v satisfying the congruence α+βv+γv2 ≡ 0 mod σ.

One may check this working one prime divisor of σ at a time; the quadratic formula

applies for odd prime divisors. Modulo two, 2 | σ | β2 − 4αγ implies that β is even and

the congruence has a solution. Hence Q1(1, v) ≡ 0 mod σ.

Since Q1 represents a multiple of σ, Q1 is equivalent to a form au2+β′uv+cσv2.

The fact that σ divides the discriminant implies β′ = bσ for some b ∈ Z. Thus, whether

σ divides γ or not, [Q1] = [Qred] for some diform Q.
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Corollary 65. Assume σ | ∆. The map Q 7→ (Qred, Qblue) yields a surjective function

from the set of SDL+
2 (Rσ)-equivalence classes of BQFs of discriminant ∆ to the set of

ordered pairs ([Q1], [Q2]) in Cl(∆) satisfying [Q1] = [A∆] · [Q2].

4.2 Dilinear topographs of BQDs

Here we return to the assumption that σ = 2 or σ = 3. The topograph of a

BQD Q is obtained by replacing each primitive lax divector by the corresponding value

of Q.

4.2.1 Arithmetic progression rule

P•
b = Q(~v) a = Q(~v

√
2 + ~w)

d = Q(~v + ~w
√

2)c = Q(~w)d′ = Q(~v − ~w
√

2)

a′ = Q(~v
√

2 − ~w)

(a) σ = 2

P
•

a′ = Q(~v
√
3− ~w)

d′ = Q(~v − ~w
√
3)

b = Q(~v)

c = Q(~w)

a = Q(~v
√
3 + ~w)

d = Q(~v + ~w
√
3)

e = Q(~v
√
3 + 2~w)

f = Q(2~v + ~w
√
3)f ′ = Q(2~v − ~w

√
3)

e′ = Q(~v
√
3− 2~w)

(b) σ = 3

Figure 4.1

We describe here some properties that can be used to quickly obtain the to-
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pograph of a BQD, beginning with only the values around a vertex. The polarization

identity

Q(~v1 + ~v2) +Q(~v1 − ~v2) = 2 (Q(~v1) +Q(~v2)) ,

holds for any quadratic form Q and any two-dimensional vectors ~v1, ~v2. This formula

also tells us that the sequence

Q(~v1 − ~v2), Q(~v1) +Q(~v2), Q(~v1 + ~v2)

is an arithmetic progression with step size given by the symmetric bilinear form associ-

ated to the quadratic form Q. That is, BQ(~v1, ~v2) = Q(~v1 +~v2)−Q(~v1)−Q(~v2). Conway

verifies and uses the polarization identity in [2] to obtain his Arithmetic Progression Rule

for the topograph of a BQF.

Theorem 66. At every cell in the topograph of Q, as in Figure 4.1, one finds arithmetic

progressions as below.

σ = 2: The triples (a′, 2b+c, a) and (d′, b+2c, d) are arithmetic progressions of the same

step size.

σ = 3: The triples (a′, 3b + c, a) and (d′, b + 3c, d) are arithmetic progressions of the

same step size δ and the triples (f ′, 4b + 3c, f) and (e′, 3b + 4c, e) are arithmetic

progressions of the same step size 2δ.

Proof. In both cases σ = 2, 3, the integers a′, b, c, a of a cell arise as values of Q as

displayed in Figure 4.1. More precisely,

a′ = Q(
√
σ~v − ~w), b = Q(~v), c = Q(~w), a = Q(

√
σ~v + ~w).
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Note that Q(
√
σ~v) = σQ(~v) = σb, and Q(

√
σ ~w) = σQ(~w) = σc. Then the

polarization identity implies that the sequence

a′ = Q(
√
σ~v − ~w), σb+ c = Q(

√
σ~v) +Q(~w), a = Q(

√
σ~v + ~w)

is an arithmetic progression with step size δ := BQ(
√
σ~v, ~w). Moreover, the sequence

d′ = Q(~v −√σ ~w), b+ σc = Q(~v) +Q(
√
σ ~w), d = Q(~v +

√
σ ~w)

is an arithmetic progression with step size δ′ = BQ(~v,
√
σ ~w). Note that δ = δ′. Hence

(a′, σb+ c, a) and (d′, b+ σc, d) are arithmetic progressions of the same step size.

Similarly, when σ = 3, the polarization identity can be used again to show

that f ′ = Q(2~v − ~w
√

3), 4b + 3c = Q(2~v) + Q(~w
√

3), f = Q(2~v +
√

3~w) and e′ =

Q(~v
√

3−2~w), 3b+4c = Q(~v
√

3)+Q(2~w), e = Q(~v
√

3+2~w) are arithmetic progressions

of the same step size 2δ.

We draw an arrow on each edge to represent the direction of increasing pro-

gressions, or a circle if all progressions are constant. Figure 4.2 displays an example.

The climbing principle is the same as Conway’s.

Corollary 67. Suppose b, c in Figure 4.1 are positive. Moreover, assume that the step

size δ of the arithmetic progressions is positive. Then the other values around the vertex

P are also positive, and the edges that emerge from P all point away from P .

With the same notation as in Figure 4.1 (same as in the vertex diagrams given

below) we obtain linear relations among the values around a vertex in the topograph.
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Figure 4.2: Topograph for the binary quadratic diform Q(x, y) = x2 − 2
√

2xy + 3y2.
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ab

c d

f
a

b

c
d

e

Corollary 68. When σ = 2, a+ c = b+ d. When σ = 3, a+ d = b+ e = c+ f and also

a+ c+ e = b+ d+ f .

Proof. When σ = 2, the triples (a′, 2b+c, a) and (d′, b+2c, d) are arithmetic progressions

of the same step size δ. Since δ = a − (2b + c) = d − (b + 2c) we get the relation

a + c = b + d.

When σ = 3, the triples (f ′, 4b + 3c, f) and (e′, 3b + 4c, e) are arithmetic pro-

gressions of the same step size 2δ. Since 2δ = f − (4b + 3c) = e − (3b + 4c) we get the

relation c + f = b + e.

Moreover, the triples (a′, 3b + c, a) and (d′, b + 3c, d) are arithmetic progres-

sions of the same step size δ = a − (3b + c) = d − (b + 3c). This gives the relation

a = d + 2(b− c). The relation a + d = b + e follows from 2δ = a− (3b+ c) + d− (b+

3c) = e−(3b+4c). From a = d+2(b−c) and b−c = f−e we obtain a = d+(b−c)+(f−e),

which gives the relation a + c + e = b + d + f .

4.2.2 Local formulas for discriminant

Here we define the discriminant of a cell in the dilinear topograph of a BQD Q

and show it is equal to ∆(Q).
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Definition 69. If σ = 2 then

∆


 b a

dcd′
a′


 = (2b− c)2 − aa′.

Note that we get the quantity (2c−b)2−dd′ when we swap the top and bottom

values of the cell. Moreover, both (2b− c)2 − aa′ and (2c− b)2 − dd′ remain unchanged

after swapping the left and right pinwheel (i.e. after swapping a, a′ and d, d′).

Using the relations between the values in a cell (given by the arithmetic pro-

gressions and a+ c = b+ d) we can simplify the discriminant of a cell. For example, we

can plug a′ = 2(2b + c) − a into (2b − c)2 − aa′ and get a quantity involving only a, b

and c (values in the right pinwheel).

∆


 b a

dcd′
a′


 = ∆


 b a

dc


 = a2 + (2b)2 + c2 − 2(2ab+ ac+ 2bc)

= b2 + (2c)2 + d2 − 2(2bc+ bd+ 2cd)

= c2 + (2d)2 + a2 − 2(2cd+ ca+ 2da)

= d2 + (2a)2 + b2 − 2(2da+ db+ 2ab).

Note that by symmetry in swapping a, a′ and d, d′ we could also express it

as a quantity involving only values in the left pinwheel. Moreover, adding the above

quantities we can get a quantity involving all the values around a vertex. Note that this

remains unchanged when we rotate or reflect the pinwheel. More precisely, we have

∆


 b

cd′
a′


 = ∆


 b a

dcd′
a′


 = ∆


 b a

dc


 (4.1)

=
3

2
(a2 + b2 + c2 + d2)− 2(a+ c)(b+ d)− (ac+ bd).
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Definition 70. If σ = 3 then

∆




a′

d′

b
c

a

d

e
ff ′

e′




= (3b− c)2 − aa′ = (4b− 3c)2 − ff ′
4

.

As in the σ = 2 case we can simplify the discriminant of a cell and obtain the

following.

∆




a′

d′

b
c

a

d

e
ff ′

e′




= ∆



b
c

a

d

e
f




= a2 + (3b)2 + c2 − 2(3ab+ ac+ 3bc)

= b2 + (3c)2 + d2 − 2(3bc+ bd+ 3cd)

= c2 + (3d)2 + e2 − 2(3cd+ ce+ 3de)

= d2 + (3e)2 + f2 − 2(3de+ df + 3ef)

= e2 + (3f)2 + a2 − 2(3ef + ea+ 3fa)

= f2 + (3a)2 + b2 − 2(3fa+ fb+ 3ab).

By adding the above quantities we obtain an expression for the discriminant

of a cell which remains unchanged when we rotate or reflect a pinwheel contained in the

cell.

∆




a′

d′

b
c

f ′
e′




= ∆




a′

d′

b
c

a

d

e
ff ′

e′




= ∆



b
c

a

d

e
f




(4.2)
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=
11

6
(a2+b2+c2+d2+e2+f2)−2(ab+bc+cd+de+ef+fa)−1

3
(ac+ce+ea+bd+df+fb).

Theorem 71. Let Q(x, y) = αx2 + β
√
σxy + γy2 be a binary quadratic diform. The

discriminants of all cells in the topograph of Q are equal to ∆(Q) = σ(β2σ − 4αγ).

Proof. It is easy to check using the above formulas that the discriminant of the home

pinwheel equals ∆(Q). For instance, the discriminant at the home pinwheel in the case

σ = 2 is given by

∆


 α 2α+ 2β + γ

α+ 2β + 2γγ


 = 4β2 − 8αγ = ∆(Q).

Then, by 4.1 and 4.2, the discriminants of all cells adjacent to the home pinwheel must

also be equal to ∆(Q). Since all the other cells are linked to the home pinwheel, the

discriminants of every cell must be equal to ∆(Q).

4.2.3 Wells for definite diforms

The climbing principle says that when the values corresponding to an edge

in the topograph are positive, then the arrows maintain a flow of constant increase.

We show here that the topograph of a positive-definite BQD (whose values are always

positive) has a unique source for its flow.

Proposition 72. Let Q be a positive-definite BQD over Rσ, with σ = 2 or σ = 3. Then

the topograph of Q exhibits a unique well – either a single vertex or an edge (double-well)

from which all arrows emanate.

Proof. The set of values occurring in the topograph of Q is a set of positive integers, so

53



it has a smallest element. Let b be that smallest integer. Note that there might be two

or more regions in the topograph of Q where the same smallest value occurs.

Let c be the smallest among the integers in a face opposite to b. The arithmetic

progression rules, in a series of cases, imply that all arrow point away from the edge

separating b and c. When the edge separating b and c is marked by a circle, the topograph

exhibits a double-well. Otherwise, the topograph exhibits a single-well.

Remark 73. A double-well can be seen in Figure 4.2 above. A single-well can be seen in

Figure 4.3 below.

4.2.4 Interlacing Conway topographs

Every value on the topograph of a BQD Q appears on the topograph of Qred or

of Qblue. In this way, values from two of Conway’s topographs interlace in the topograph

of a binary quadratic diform.

Proposition 74. If z appears on the topograph of Qred, then (1) z appears on the

topograph of Q or (2) σ | z and zσ−1 appears on the topograph of both Qblue and Q.

Similarly, if z appears on the topograph of Qblue, then (1) z appears on the topograph of

Q, or (2) σ | z and zσ−1 appears on the topographs of both Qred and Q.

Proof. Suppose z occurs on the topograph of Qred. Thus Qred(u, v) = z for some coprime

u, v ∈ Z. If GCD(u, σv) = 1, then (u, v
√
σ) is a primitive divector, and Q(u, v

√
σ) =

Qred(u, v) = z appears in the topograph of Q.

If GCD(u, σv) 6= 1, then σ | u and GCD(σ−1u, v) = 1. We compute σ−1z =

54



3

1

3
5

23

21

7

9

7

9

23

21

67

49

127

129

63

81

47

45

15
21

35

29

35

29

47

45

15

21

63

81

127

129

67

49

135

89

215

261

307

249

123

181

147
109

123

161

107
101

27
41

83

69

103

129

183

189

87

61

87

61

183

189

103

129

123

161

267

269

147

109

83

69

107

101

27
41

123

181

427

409

307

249

435

329

315
421

215

261

327
345

135
89

227

141

203

321

203
189

43
69

167
141

207

145

163

105

163
105

415
441

287

345

447
601

643

489

483

389

687

661

207

301

235

349

615

501

467

569

303

201

207

145

435

449

243

305

283

369

327
241

167

141

203
189

43
69

203

321

447

641

463
549

623
669

227
141

343

205

303

501

63105

263

161

263
161

743
801

567
669

603

861

347

545

383

609

515

321

387

249

427

301

287
245

335
309

63
105

303

501

343 205

87149

387229

523

861

567

941

783

469

623

381

87 149

483 281

115201

535309

115 201

647 369

147261

707401

147 261

835 469 903505

183 329

Figure 4.3: Topograph for the definite binary quadratic diform Q(x, y) = x2+
√

2xy+3y2

over Z[
√

2].
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σ−1Qred(u, v) = Qblue(σ
−1u, v) = Q(σ−1u

√
σ, v). Hence σ−1z appears on the topograph

of both Qblue and Q.

Corollary 75. Let µred and µblue be the minimum nonzero absolute values of Qred and

Qblue. Then min{µred, µblue} is the minimum nonzero absolute value of Q.

Proof. Every value on the topograph of Q occurs in the topograph of Qred or Qblue.

Hence the minimum nonzero absolute value µQ of Q satisfies µQ ≥ min{µred, µblue}.

Conversely, suppose without loss of generality that µred ≤ µblue. Then either µred occurs

in the topograph of Q, or else µredσ
−1 occurs in the topograph of Qblue. The latter

would contradict the assumption that µred ≤ µblue; thus µred = µQ.
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Chapter 5

Indefinite diforms

5.1 Indefinite forms and the river

If Q(x, y) = αx2 + β
√
σxy + γy2 is a diform of discriminant ∆(Q) then the

following identity holds:

4ασQ(x, y) = (2α
√
σx+ βσy)2 −∆(Q)y2.

If ∆(Q) > 0 then Q represents both positive and negative integers, and it is called

indefinite diform. We call Q degenerate if ∆(Q) = 0 or ∆(Q) is a square.

The faces of the topograph with value zero are called lakes. The set of segments

separating positive values from negative values is called a river. Throughout this chapter

we will explore the topographs of indefinite forms. We will show in this section that for

indefinite forms, topographs without lakes have endless rivers.

Lemma 76. Let Q be a BQD of discriminant ∆(Q). The topograph of Q contains a

lake if and only if ∆(Q) is a square.
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Proof. We compute the discriminant at a pinwheel containing a face with value zero

using the formulas we got in the previous chapter.

If σ = 2 then ∆(Q) = ∆


 0 a

dc


 = a2 + (2 · 0)2 + c2 − 2(2a · 0 + ac+ 2 · 0 · c)

= a2 + c2 − 2ac = (a− c)2.

If σ = 3 then ∆(Q) = ∆




0
c

a

d

e
f




= a2 + (3 · 0)2 + c2 − 2(3a · 0 + ac+ 3 · 0 · c)

= a2 + c2 − 2ac = (a− c)2.

For the converse, assume ∆(Q) is a square. Then the binary quadratic forms

Qred and Qblue have square discriminants, so their topographs contain lakes; see ref.

[11], Proposition 11.2. Hence the topograph of Q contains a lake.

Lemma 77. Rivers cannot branch.

Proof. If a river branched, the faces around the branch point would alternate signs as

they cross each river segment. Hence the rivers may only branch with even degree at a

vertex. The possibilities, up to symmetry, are displayed below.

ab

c d

(I)

f
a

b

c
d

e

(II)

f
a

b

c
d

e

(III)

f
a

b

c
d

e

(IV)
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We use Corollary 68 to exclude each of them. When σ = 2, the identity

a + c = b + d yields a contradiction if the signs of a and c are equal, and opposite

to the signs of b and d. Similarly, when σ = 3, the identity a + c + e = b + d + f

yields a contradiction if the signs of a, c, e are equal and opposite to the signs of b, d, f .

Branch-forms (I) and (II) are excluded.

When σ = 3, then a+d = b+e = c+f also holds. Thus we find a contradiction

if the signs of b, e are equal and opposite to the signs of c, f . This excludes form (III).

We also find a contradiction if the signs of a, d are equal, and opposite to the signs of

b, e. This excludes form (IV). Hence the river cannot branch.

Proposition 78. If Q is a nondegenerate indefinite diform, then its topograph contains

a single endless nonbranching river.

Proof. Since Q is an indefinite diform both positive and negative values occur in its

topograph. SinceQ is nondegenerate its discriminant is nonsquare and Lemma 76 implies

the topograph of Q does not contain a lake (i.e. zero does not occur).

As one travels from a positive face to a negative face, one must at some point

cross a river from positive to negative. This gives existence. The climbing principle

(propagation of growth-arrows) demonstrates that as one travels away from a river, one

cannot hit another river, giving uniqueness.

The river cannot terminate since there are no lakes, and so the river is endless.

The crux of the proposition is that rivers cannot branch. This is Lemma 77, proved

above.
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Figure 5.1: Topograph for the indefinite diform Q(x, y) = x2 − 2y2 over Z[
√

3].
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b > 0

c < 0

2b+ c− δ 2b+ c+ δ

(a) σ = 2

b > 0

c < 0

3b+ c− δ 3b+ c+ δ

(b) σ = 3

Figure 5.2: Cells containing a river segment.

The following result shows that going along the river, from segment to segment,

we must find a repetition. Once we find a repetition, the pattern repeats.

Proposition 79. Endless rivers are periodic.

Proof. We will show that the values adjacent to the river in a river-cell of discriminant

∆ are bounded by k∆ for some k ∈ R. The river-cells are displayed in Figure 5.2 above.

Let σ = 2, 3 and let δ be the step size of the arithmetic progressions as in Theorem 66.

Then ∆ = (σb − c)2 − (σb + c − δ)(σb + c + δ) = δ2 − 4σbc. Since b > 0 and c < 0 we

have −4σbc > 0 and thus 0 ≤ δ2 < ∆. Moreover,

0 < b · |c| ≤ ∆

4σ
.

Thus δ <
√

∆ and b ≤ ∆
4σ . Given ∆, the value of δ and b determine the value of c.

Thus there are finitely many possible river-cells, so there must be a repetition. Hence

the river is periodic.
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5.2 Riverbends shapes and estimates

By Proposition 49 every region of the topograph is incident with infinitely many

edges and the values around it form a bi-infinite sequence whose nth term is given by

an = Q(~w + n
√
σ~v) for n ∈ Z; see Figure 5.3 below.

b = Q(~v)

a0 = Q(~w)

a−1 = Q(~w −√σ~v) a1 = Q(~w +
√
σ~v)

a2 = Q(~w + 2
√
σ~v)a−2 = Q(~w − 2

√
σ~v)

...
...

Figure 5.3: River around the edges of an infinity-gon.

Proposition 80. The sequence (an)n∈Z of values around a face labelled b, as in Figure

5.3, is a quadratic sequence with acceleration 2σb.

Proof. We need to check that the sequence of differences between any two consecutive

terms form an arithmetic progression of step size 2σb. The Arithmetic Progression Rule

implies that the triples

(a−2, σb+ a−1, a0), (a−1, σb+ a0, a1) and (a0, σb+ a1, a2)

are arithmetic progressions.
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Then (σb + a−1) − a−2 = a0 − (σb + a−1), (σb + a0) − a−1 = a1 − (σb + a0),

and (σb+ a1)− a0 = a2 − (σb+ a1). This implies

(a0 − a−1)− (a−1 − a−2) = 2σb,

(a1 − a0)− (a0 − a−1) = 2σb,

(a2 − a1)− (a1 − a0) = 2σb.

Therefore (a2 − a1), (a1 − a0), (a0 − a−1), (a−1 − a−2) is an arithmetic progression of

step size 2σb. Hence ..., a−2, a−1, a0, a1, a2, ... is a quadratic sequence with acceleration

2σb.

If the value b is positive, then the values across the river are negative. But

in this case, the values a−2, a−1, a0, a1, a2 form a quadratic progression with positive

acceleration 2σb. Similarly, if the value b is negative, the values a−2, a−1, a0, a1, a2 form

a quadratic progression with negative acceleration 2σb. Hence as one travels far enough,

to the left and to the right, we must see a sign switch for the values across from b. Since

the entire river cannot be adjacent to a single region, the river must “bend.”

As we have an endless nonbranching river, analysis of “riverbends” gives a

minimum value bound for diforms.

Theorem 81. Let Q be a nondegenerate indefinite BQD, and let µQ denote its minimum

nonzero absolute value.

σ = 2: If Q is not DL2(Rσ)-equivalent to a multiple of x2 − y2, then µQ ≤
√

∆/10.

σ = 3: If Q is not DL2(Rσ)-equivalent to a multiple of x2 − y2, then µQ ≤
√

2∆/25.
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Proof. If one finds riverbends as in Figures 5.4 or 5.5, the local formulas for discriminant

give the stated minimum value bound or better. For example, the bound displayed in

Figure 5.4 is obtained by expanding the discriminant and writing it is a sum of ten

positive integers:

∆ = b2 + b2 + b2 + b2 − bc− bc− bc− bc+ c2 − aa′.

Thus |b| · |b| ≤ ∆/10, |b| · |c| ≤ ∆/10, |c| · |c| ≤ ∆/10 or |a| · |a′| ≤ ∆/10. If the product of

two positive integers is bounded by ∆/10 then one of the two integers must be no greater

than
√

∆/10. Hence the minimum nonzero absolute value of Q satisfies µQ ≤
√

∆/10.

The bounds displayed in Figure 5.5 can be proved similarly.

(Either way)

b > 0

c < 0

a′ < 0 a > 0 ∆ = (2b− c)2 − aa′

µQ ≤
√

∆/10

Figure 5.4: Riverbend types for σ = 2.

(Any of these four)

b > 0

c < 0

a′ < 0 a > 0

∆ = (3b− c)2 − aa′

µQ ≤
√

∆/17

(Any of these three)

b > 0

c < 0

a′ < 0 a > 0 4∆ = (4b− 3c)2 − aa′

µQ ≤
√

2∆/25

Figure 5.5: Riverbend types for σ = 3.
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If no such riverbends of those shapes occur, then the river must maintain one

of the three shapes of Figure 5.6 throughout its entire length.
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Fig. 7. Topographs for the definite binary quadratic diform Q(x, y) = x

2
+

Ô
2xy +

3y

2 over Z[

Ô
2] and the indefinite diform Q(x, y) = x

2 ≠ 2y

2 over Z[

Ô
3].

Thus we draw an arrow on each edge to represent the
direction of increasing progressions, or a circle if all progres-
sions are constant. Figure 7 displays some examples. The
climbing principle is the same as Conway’s: arrows always
propagate when one looks at a cell of positive values. Thus
a positive-definite BQD will exhibit a unique location in its
topograph from which all arrows flow outwards. In terms of
binary quadratic forms, Qred and Qblue may be simultaneously
reduced.

The river of a BQD is the set of segments separating positive
values from negative. The most interesting forms, just as for
BQFs, are the nondegenerate indefinite forms. The topographs
of such forms exhibit a single endless and periodic river, as in
Conway’s case. An analysis of riverbends gives a minimum
value bound for such BQDs.

(Either way)

u > 0

v < 0

e < 0 f > 0 � = (2u � v)2 � ef

µQ 
p

�/10

Fig. 8. Riverbend types for ‡ = 2.

(Any of these four)

u > 0

v < 0

e < 0 f > 0

� = (3u � v)2 � ef

µQ 
p

�/17

(Any of these three)

u > 0

v < 0

m < 0 n > 0 4� = (4u � 3v)2 � mn

µQ 
p

2�/25

Fig. 9. Riverbend types for ‡ = 3.

Fig. 10. One more river shape for ‡ = 2 and two more shapes for ‡ = 3.

Theorem 8. Let Q be a nondegenerate indefinite BQD, and
let µQ denote its minimum nonzero value.

‡ = 2: If Q is not DL2(R‡)-equivalent to x2 ≠y2, then |µQ| Æ
�/10.

‡ = 3: If Q is not DL2(R‡)-equivalent to x2 ≠ y2 or x2 ≠ 2y2,
then |µQ| Æ


2�/25.

Proof. The entire river cannot be adjacent to a single region,
because its values opposite such a region would form a bi-
infinite quadratic sequence with positive sign and negative
acceleration, or negative sign and positive acceleration. Hence
the river must “bend.” If one finds riverbends as in Figures 8
or 9, Eq. (1) gives the stated minimum value bound or better
(as derived in the figures). If no such riverbends of those
shapes occur, then the river must maintain one of the three
shapes of Figure 10 throughout its entire length.

The isometry group of such a homogeneous river includes
a translation along the river; a bit of matrix algebra implies
that Q is equivalent to a multiple of x2 ≠ y2 when ‡ = 2, or a
multiple of x2 ≠ y2 or x2 ≠ 2y2 if ‡ = 3.

Corollary 9. Suppose that Q1 and Q2 are nondegenerate
indefinite BQFs of discriminant �, with ‡ | � and [Q2] =
[A�] · [Q1]. Then

‡ = 2: If Q1 and Q2 are not equivalent to a multiple of x2 ≠
2y2, then |µQ1 | Æ


�/10 or |µQ2 | Æ


�/10.

‡ = 3: If Q1 and Q2 are not equivalent to a multiple of x2≠3y2

or 2x2 ≠ 3y2, then |µQ1 | Æ


�/13 or |µQ2 | Æ


�/13.

Proof. This follows directly from the previous theorem and
Theorem 6, except that 2/25 has been replaced by 1/13. This
is possible, due to a gap in the Marko� spectrum between

Ô
12

and
Ô

13; see (9, §1, Proof of Theorem 3.3).

4. Conclusion

In each of the discussed examples, there is a coincidence be-
tween a Coxeter group and an arithmetic group. For Conway’s
topograph, it is the coincidence between the Coxeter group of
type (3, Œ) and the arithmetic group P GL2(Z). The dilinear
groups, of Coxeter types (2‡, Œ) for ‡ = 2, 3, are arithmetic
subgroups of P GU

Q(Ô
‡)/Q

1,1 (Q), the projective unitary simil-
itude group for a Hermitian form relative to the extension
Q(

Ô
‡)/Q. When such a coincidence occurs, the Coxeter group

is arithmetic, and the following two questions are natural.

1. Is there an arithmetic interpretation for the flags in the
Coxeter group?

2. Does the Coxeter geometry give a new reduction theory
for a class of quadratic (or Hermitian) forms?
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Figure 5.6: One more river shape for σ = 2 and two more shapes for σ = 3.

The isometry group of such a homogeneous river includes a translation along the

river. Replacing Q by a DL2(Rσ)-equivalent form if necessary, we may place this river

through the segment separating ±(1, 0) and ±(0, 1). Translation along the homogeneous

rivers is then given by the matrices

R =




√
2 1

1
√

2


 , S =




2
√

3

√
3 2


 , T =




√
3 1

2
√

3




in the three pictured cases of Figure 5.6. Periodicity of the river implies that Re, Se or

T e is an isometry of Q for some e > 0.

The eigenvectors of R and S are (1, 1) and (1,−1). If λ and µ denote their

eigenvalues, then

Q(1, 1) = λ2eQ(1, 1) and Q(1,−1) = µ2eQ(1,−1).

But a quick computation demonstrates that λ, µ ∈ R and λ, µ 6∈ {1,−1}. Hence

Q(1, 1) = Q(1,−1) = 0 in the two straight-river cases. Writing the diform as Q(x, y) =
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αx2 + β
√
σxy + γy2, this implies

α+ β
√
σ + γ = α− β√σ + γ = 0.

Hence α = −γ and β = 0. We have proven that an endless straight river occurs only if

Q is equivalent to a multiple of x2 − y2 (when σ = 2 or σ = 3).

It remains to study the third shape of homogeneous river, on which T acts by

translation. The eigenvectors of T are (1,
√

2) and (−1,
√

2), with eigenvalues
√

3±
√

2.

Hence, if T e is an isometry of Q for some e > 0, then Q(1,
√

2) = Q(−1,
√

2) = 0. In

this case, α + β
√

6 + 2γ = α − β
√

6 + 2γ = 0. Hence β = 0 and α = −2γ. We have

proven that an endless homogeneous river of the third form occurs if and only if Q is

equivalent to a multiple of 2x2−y2. The discriminant of the diform 2x2−y2 is 24, while

its minimum absolute value is µQ = 1. The estimate µQ ≤
√

2∆/25 can be directly

checked in this case, finishing the proof.

Remark 82. The exceptional diforms x2 − y2 cannot be removed from the previous

theorem. The discriminant of the diform x2 − y2 is 4σ and its minimal value is µQ = 1.

Thus when σ = 2, the estimate µQ ≤
√

∆/10 is violated; when σ = 3, the estimate

µQ ≤
√

2∆/25 is violated.

Definition 83. The Markoff spectrum is the set of real numbers m = µQ/
√

∆ corre-

sponding to all nondegenerate indefinite binary quadratic forms Q.

It has been long known that there is a gap in the Markoff spectrum between

1/
√

12 and 1/
√

13; see [3, §1, Proof of Theorem 3.3]. The following corollary follows

directly from the previous theorem (
√

2/25 was replaced by 1/
√

13) and Theorem 64.
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Corollary 84. Suppose that Q1 and Q2 are nondegenerate indefinite BQFs of discrim-

inant ∆, with σ | ∆ and [Q2] = [A∆] · [Q1]. Then

σ = 2: If Q1 and Q2 are not equivalent to a multiple of x2 − 2y2, then

min{µQ1 , µQ2} ≤
√

∆/10.

σ = 3: If Q1 and Q2 are not equivalent to a multiple of x2 − 3y2, then

min{µQ1 , µQ2} ≤
√

∆/13.

Remark 85. The classical bound for a binary quadratic form Q is µQ ≤
√

∆/5.
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