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Abstract

Generalizations of Conway’s Topograph arising from Arithmetic Coxeter Groups

by

Suzana Milea

Conway’s topograph can be used in the study of binary quadratic forms (BQFs)
to replace tedious algebraic computations with straightforward geometric arguments.
The crux of his method is the isomorphism between the arithmetic group PG L2(Z) and
the Coxeter group (3,00). We introduce the arithmetic groups called dilinear groups
and construct generalizations of Conway’s topograph called dilinear topographs. Then
we use them to study variants of BQFs, called binary quadratic diforms (BQDs). The
payoff can be seen in the last chapter in our investigation of minimum value bounds for

diforms and pairs of BQFs.
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Introduction

Conway introduces in [2]| a simple and elegant combinatorial-geometric method
of classifying all integral binary quadratic forms (BQFs), and answering some basic ques-
tions about them. The geometry of Conway’s topograph reflects the fact that PGLo(Z)
is isomorphic to the Coxeter group of type (3, c0).

Let o > 1 be a square-free positive integer. The dilinear group DLy(Z[/0]) is
the group of invertible matrices with entries in Z[/o], where one diagonal has entries
in Z and the other diagonal has entries in Z - \/o. Johnson and Weiss show in [5] that
when o = 2 or ¢ = 3 the dilinear groups admit Coxeter group presentations.

Whenever there is an isomorphism from a Coxeter group to an arithmetic group,
it is natural to look for arithmetic interpretations. The coincidence between the dilinear
groups and the Coxeter groups (4,00) and (6,00) led to the creation of the “dilinear
topographs”. These geometric objects can be used to study binary quadratic “diforms”
and easily bound the minima of BQFs.

Here is a brief outline of each of the chapters in this thesis. Chapter 1 is
collection of results and definitions necessary for later chapters. The notions of incidence

system, incidence geometry and Coxeter geometry are introduced in Section 1.3.



Chapter 2 introduces the dilinear groups and describes their action on divectors.
The goal is to give the group isomorphism from (20, 00) to DLy(R,) when o = 2,3. In
Chapter 3 we introduce the dilinear topograph as an incidence system and prove that
it is an incidence geometry (all maximal flags are chambers). We then use the group
isomorphism described in Chapter 2 to prove that this geometry is isomorphic to the
Coxeter geometry.

Chapter 4 introduces binary quadratic diforms, and their connection to BQFs.
Their topographs exhibit similar features to Conway’s topograph. We give the arithmetic
progression property, climbing principle and the local formulas for the discriminant (from
any cell in the topograph). We finish the chapter with a discussion on how the values
from two Conway’s topographs interlace in the topograph of a diform.

Chapter 5 is focused on nondegenerate indefinite diforms. Their topograph
contain both positive and negative values. As in Conway’s topograph, the river is the
set of segments separating positive values from negative ones. Analyzing the shape of
the river helps us determine minimum-value bounds for diforms and for pairs of related

BQFs.



Chapter 1

Preliminaries

1.1 Reflection groups

The results presented in this section may be found in Chapter 7 of Ratcliffe’s
book Foundations of Hyperbolic Manifolds [9].

Let X denote the unit n-sphere S™, the Euclidean n-space E™ or the hyperbolic
n-space H™. Let P be an n-dimensional convex polyhedron in X and let F' be a facet
of P (i.e. a face of dimension n — 1). The reflection of X in the facet F of P is the

reflection of X in the hyperplane spanned by F'.

Definition 1. A subset R of a metric space X is a fundamental region for a group I' of
isometries of X if and only if

(1) the set R is open in X;

(2) the members of {gR : g € I'} are mutually disjoint; and

(3) X =U{gR: g € T'}. Here R denotes the closure of R.



Definition 2. A subset D of a metric space X is a fundamental domain for a group I'

of isometries of X if and only if D is a connected fundamental region for I'.

Definition 3. A fundamental region R for a group I' of isometries of a metric space X
is locally finite if and only if {gR : g € T'} is a locally finite family of subsets of X (i.e. for
each point z of X, there is an open neighborhood U of x in X such that U meets only

finitely many members of the family).

Definition 4. A convex fundamental polyhedron for a discrete group I' of isometries of
X is a convex polyhedron P in X whose interior is a locally finite fundamental domain

for I'.

Definition 5. A convex fundamental polyhedron P for a discrete group I' of isometries

of X is exact if for each facet F' of P there is an element g of I" such that F' = PNg(P).

Theorem 6. (/9/, p.252) If F is a facet of an exact, convez, fundamental polyhedron P
for a discrete group I' of isometries of X, then there is a unique element gp # 1 of T’

such that F'= P N gr(P), moreover g5 (F) is a facet of P.

The group I' is defined to be a discrete reflection group, with respect to the
polyhedron P, if and only if gr is the reflection of X in the hyperplane spanned by F'

for each facet F' of P.

Theorem 7. (9], p.265) Let T be a discrete reflection group with respect to the polyhe-
dron P. Then all the dihedral angles of P are submultiples of w; moreover, if gr, and gr,
are the reflections in adjacent facets Fy and Fy of P, and 6(Fy, Fy) = w/k, then gr, gr,

has order k in T.



Theorem 8. ([9], p.265) Let P be a finite-sided, n-dimensional, convex polyhedron in
X of finite volume all of whose dihedral angles are submultiples of w. Then the group
I" generated by the reflections of X in the facets of P is a discrete reflection group with

respect to the polyhedron P.

Theorem 9. (/9/, p.273) Let T be a discrete reflection group with respect to a polyhedron
P in X with finitely many facets and finite volume. Let {F;} be the set of facets of P
and for each pair of indices i,j such that Fy and Fj are adjacent, let ki; = w/0(F;, F}).
Then

(Fi| FY =1, (FFy)* =1)
is a group presentation for I' under the mapping F; — gr,.

Here it is understood that (F;F;)*i is to be deleted if k;; = oo.

1.2 Coxeter groups

We will mainly follow the classical reference Reflection groups and Coxeter
groups by Humphreys [1| to reproduce definitions and essential properties of Coxeter
groups. The definition of a Coxeter group was motivated by finite groups generated
by reflections and ‘most’ finite reflection groups turn out to be ‘Weyl groups’ (thus the

letter W is used).

Definition 10. A group W is a Cozeter group if there is a finite subset S of W such

that W has the presentation

(s €S| (ss)™=5) =1)

)



where m(s,s’) € {2,3,4,...,00} is the order of ss’, s # s, and m(s,s) = 1. (When

m(s,s’) = oo there is no relation between s and s').

The pair (W, S) is called a Cozeter system. The cardinality of S is called the
rank of (W, S). Since the generators s € S have order 2 in W, each w # 1 in W can be
written in the form w = sys2 -+ s, for some s; (not necessarily distinct) in S. If r is as
small as possible, call it the length of w, written I(w).

A convenient way of describing a Coxeter system (W, S) is through the con-

struction of its Coxeter graph.

Definition 11. The Cozxeter graph of the Coxeter system (W,S) is an edge labelled
graph 'y, with one node for each s € S and an edge from s to s if m(s,s’) > 2, labeled

m(s,s’). (In practice, if m(s, s’) = 3, the label is supressed).

Example 12. The symmetric group ¥, of permutations of n letters is a Coxeter system
when we let S = {(i i+ 1) : 1 <i < n} be the set of elementary transpositions.

The Coxeter graph of (X,,95) is

(12) (23) (n—2n-1) (n—1mn)

where the " node corresponds to (i i +1), 1 <i < n.

Example 13. The group generated by sq, s1, s2, subject to the relations

5(2) = s% = 5% = (s1892)% = (8082)2 =1.

has the following graph



52 S1 S0

We will call this the Coxeter group of type (a, o).

Example 14. Let I' be a discrete reflection group with respect to a finite-sided poly-
hedron P of finite volume. Let {S;} be the set of facets of P, let k;; = 1 for each 4, and
for each pair of indices 4, j such that S; and S; are adjacent, let k;; = m, and let
k;; = oo otherwise. Let s; be the reflection corresponding to the facet S;. Then Theorem

9 implies that I" is the Coxeter group with presentation
(36 | (sis) = 1).

We can give a description of a Coxeter group as a motion group generated by
mirror reflections through a hyperplane with respect to a bilinear form. We redefine a
reflection to be merely a linear transformation which fixes a hyperplane pointwise and

sends some nonzero vector to its negative.

Definition 15. Let (W, S) be a Coxeter system. For a subset T' of S, let W denote
the subgroup of W generated by s € T and W7 denote the subgroup of W generated

by s € S\ T. Any conjugate a subgroup of the form Wy is called a parabolic subgroup.
Theorem 16. ([/], p.113) For each subset T of S, the pair (W, T) is a Cozeter system.

We say a Coxeter system (W, .S) is irreducible if the Coxeter graph I is con-

nected.

Theorem 17. ([/[, p.129) Let (W,S) be any Coxeter system. If T'1,--- Ty are the
connected components of the Coxeter graph I, let S1,--- , .S, be the corresponding subsets

7



of S. Then W 1is the direct product of the parabolic subgroups Wg,,--- ,Ws, , and each

Coxeter system (W, S;) is irreducible.

1.3 Incidence geometry

The goal of this section is to define the notion of flag for a general Coxeter
system (W, S) (with finite S) and the incidence geometry of such flags. We are following

Buekenhout and Cohen’s book called Diagram Geometry [1].

Definition 18. Let I be a set. A triple I' = (X, %, 7) is called an incidence system over
Iif

(1) X is a set (its elements are also called elements of T );

(2) * is a symmetric and reflexive relation on X; it is called the incidence
relation of T';

(3) 7 is a map from X to I, called the type map of I', such that distinct
elements z,y € X with z * y satisfy 7(z) # 7(y); members of the pre-image 771(7) are

called elements of type i, or i-elements.

The set 1 is called the type of I' and the cardinality of I is called the rank of
T". Tts elements as well as its subsets are called types. If A C X, we say that A is of type
7(A) and of rank |7(A)|, the cardinality of 7(A).

In an incidence system I' = (X, %, 7) over I, the set X is the disjoint union of
the sets X; = 771(i), for i € I. Thus, (X, *) is a multipartite graph with partitioning

(Xi)ier(x)-



Definition 19. A flag of I" is a set of mutually incident elements of I'. Flags of I" of

type I are called chambers.

Remark 20. A flag of I' has at most one element of each type.

Remark 21. By Zorn’s lemma, every flag is contained in at least one maximal flag, that
is, a flag not properly contained in any other flag. In an incidence system, chambers are

maximal flags. In general, however, the converse does not hold.

Definition 22. Let I" be an incidence system over I. If every maximal flag of I is a

chamber, then I is called a geometry over I.

Definition 23. Let I' = (X, *,7) be an incidence system over I and IV = (X', «',7/) an
incidence system over I’. A weak homomorphism o : ' — I is a map « : X — X’ such
that, for all z,y € X,

(1) z xy implies a(x) *" a(y) (i.e. a preserves incidence);

(2) 7(x) = 7(y) implies 7'(a(x)) = 7'(a(y)) (i-e. a sends elements of the same
type in I to elements of the same type in I").

If; in addition, I = I’ and 7(z) = 7/(a(x)) for all z € X, then « is called a

1 is also a weak

homomorphism. A bijective weak homomorphism « whose inverse a~
homomorphism is called a correlation. If o is a homomorphism and a correlation, then

we call @ an isomorphism (of incidence systems) and write I' = T".

Definition 24. Let (G;);ecs be a system of subgroups of the group G. The coset incidence
system of G over (G;)ier, denoted by I'(G, (G;)icr) is the incidence system over I, whose
elements of type i are the cosets of G; in G and in which the incidence relation is given

9



aG; and bG; are incident if and only if aG; N bG; # 0.

If T(G, (Gi)ier) is a geometry it is called the coset geometry.

Remark 25. In Definition 24 we say “system” of subgroups rather than “set” of subgroups
to prevent the confusion in case two subgroups G; and G}, are the same for distinct
Jk € I. A coset of G coincides with a coset of G} only if G; = Gj. So, if the
subgroups of the system are chosen to be mutually distinct, the union of G/G; over all
i € I is disjoint. Furthermore, an instance G; = Gy, for distinct j and k does not provide

an interesting geometry.

Remark 26. G acts on the coset incidence system I'(G, (G;)iecr) by left multiplication.
The notation GG; has been chosen so as to resemble the notation for the stabilizer in GG
of an element of type i. Indeed, G; is the stabilizer of the element G; of type ¢ and

{Gili € I} is a chamber of I'(G, (G;)icr)-

Definition 27. Given subgroups G; (i € I) of G, and J C I, we write G to denote
ijJ Gj. We call this subgroup the standard parabolic subgroup of G of type J (so

Gyjy = Gy for each j € J).

The following result gives three equivalent conditions necessary for a coset

incidence system to be a geometry.

Theorem 28. ([1], p.33) Let I' be the coset incidence system of G over (G;)ier. If I is

finite, then the following statements are equivalent.

10



(1) G is flag transitive on T

(ii) For each subset J of I of size three, the group G is transitive on the set of
flags of type J, and for eachi € I the subgroup G; is flag transitive on T'(Gi, (Gi 1) jer fi})-

(iti) For each J C I and eachi € I\ J, we have G;G; = ;¢ ;(G;Gi).

If one (whence all) of these properties hold, then T is a geometry.

Let I be a finite set and (W, S = {s;};cr) be a Coxeter system. Let W denote
the parabolic subgroup of W generated by s € S\ {s;}. Let I'yy be the coset incidence
system of W over {W®};c;. In this case condition (iii) of the above theorem is exactly

the statement of the following result. Thus I'yy is a geometry (called Cozeter geometry).

Proposition 29. (/10], Prop.2.2.12) Let (W, S) be a Cozeter system of finite rank. For
any proper non-empty subset T C S, and for any s € S\ T,

WIws = (Y W'we.

tel
1.4 Conway’s topograph

Parts of this section have already appeared in our article in PNAS [8]. The
purpose of this section is to describe the combinatorial-geometric method for analyz-
ing integer-valued binary quadratic forms introduced in Conway’s book The Sensual
(Quadratic) Form |2].

Recall that binary quadratic forms (BQFs) are functions Q : Z? — Z of the
form Q(z,y) = ax® + bry + cy?; with a,b,c € Z. Since Q(kz,ky) = k*Q(x,y), to
understand the values of @ at all vectors in Z? it will suffice to explore its values at

11



primitive vectors, i.e. vectors ¥ = (a,b) € Z? with the property that a and b are coprime

integers. Also, since Q(—v) = Q(¥) it will be convenient to think of ¢ and —¥ as the

same vector. Such a vector will be written ¢ and called a laz vector.

Definition 30. A laz basis is an unordered pair {£¥, £} of primitive lax vectors which

form a Z-basis of Z2.

Definition 31. A laz superbasis is an unordered triple {+u, +¥, +j}, any two of which

form a lax basis.

Definition 32. The topograph is the incidence system of type I = {0, 1,2}, consisting
of: faces (elements of type 2) are primitive lax vectors, edges (elements of type 1) are
lax bases, and points (elements of type 0) are lax superbases. Incidence among points,

edges, and faces is defined by containment (symmetrically).

A mazimal flag in this context refers to a point contained in an edge contained
in a face. Conway shows in his book (|2|) how every partial flag can be completed to a
chamber. He describes how primitive lax vectors can be completed to lax bases, then
to lax superbases. Since every maximal flag is a chamber, Conway’s topograph is a
geometry over I. The geometry is displayed in Figure 1.1; the points and edges form a
ternary regular tree, and the faces are oo-gons.

The geometry of Figure 1.1 also arises as the coset geometry of the Cozeter
group W of type (3,00) generated by the set S = {s;}ier where I = {0,1,2}. For a
subset .J of I, the flags of type J are cosets W/W”. The maximal flags are the flags of
type I, i.e., the cosets W/W! = W/Wy = W/{Id} = W. Since the action of W on W

12



Figure 1.1: Conway’s geometry of primitive lax vectors, lax bases, and lax superbases.

by left-multiplication is simply-transitive, the Coxeter group W acts simply-transitively
on the maximal flags.

The geometric coincidence reflects the fact that PG Ly(Z) is isomorphic to the
Coxeter group W of type (3,00), a classical result known to Poincaré and Klein. This
raised the natural question: given a coincidence between an arithmetic group and a

Coxeter group, is there an arithmetic interpretation of the flags in the Coxeter group?

13



1.5 Topographs of binary quadratic forms

Parts of this section have already appeared in our article in PNAS [3]. A
detailed description of topographs of BQFs can be found in Chapter III of the book An
Tllustrated Theory of Numbers [11].

Let @ be a BQF. We can obtain Conway’s topograph of QQ by labeling the faces
of the topograph: the face corresponding to the primitive lax vector £+ is labeled by

the value Q(4%). Figures 1.2 and 1.3 display examples.

Figure 1.2: The topograph of Q(xz,y) = x? + 2y?, with arrows exhibiting the climbing

principle. The well (source of the flow) is the cell at the center of the figure.

14



If u,v, e, f appear on the topograph of @, in a local arrangement we call a cell,

then Conway observes that the integers e, u + v, f form an arithmetic progression.

e f f—(u+v)=(u+v)—e

The discriminant of ) can be seen locally in the topograph, at every cell, by
the formula

A =u? 40?4+ €% — 2uv — 2ve — 2eu = (u —v)? — ef.

A consequence of the arithmetic progression property is Conway’s climbing
principle; if all values in a cell are positive, place arrows along the edges in the directions
of increasing arithmetic progressions. Then every arrow propagates into two arrows; the
resulting flow along the edges can have a source, but never a sink. This implies the
existence and uniqueness of a well for positive-definite forms: a triad or cell which is
the source for the flow. The well gives the unique Gauss-reduced form Qg in the
S Lo(Z)-equivalence class of Q). More precisely, every well contains a triple u < v < w of
positive integers satisfying u+4v > w, with strict inequality at triad-wells and equality at
cell-wells (see Figure 1.2). Depending on the orientation of u, v, w at the well, the Gauss-
reduced form is given below; in the ambiguously-oriented case with v = v, Qg (z,y) =

uz? + (u+v — w)zy + vy?. If u 4+ v = w, both orientations occur in a cell-well, and

Qacr(z,y) = uz? + vy?

>—% —— Qar(®,y) = uz? + (u+v — w)zy + vy?

15



%g—{ —— Qar(z,y) = uz® — (u+v —w)ay + vy’

When @ is a nondegenerate indefinite form, Conway defines the river of Q) to be
the set of edges which separate a positive value from a negative value in the topograph of
(. Since all values on the topograph of () must be positive or negative, the river cannot
branch or terminate. The climbing principle implies uniqueness of the river. Thus the
river is a set of edges comprising a single endless line. Bounding the values adjacent to
the river implies periodicity of values adjacent to the river, and thus the infinitude of
solutions to Pell’s equation. This is described in detail in [2]. Riverbends — cells with a

river as drawn below — correspond to Gauss’s reduced forms in the equivalence class of

u>0 u>0
e<0 f>0 e>0 <0
v <0 v <0

The existence of riverbends gives a classical bound, by an argument we learned from

0.

Gordan Savin.

Theorem 33. If () is a nondegenerate indefinite BQF, then the minimum nonzero value
pg of Q satisfies |pgl < \/A/5.

Proof. At a riverbend, one finds A = (u—v)? —ef = u? +v? —uv — vu —ef, the sum of

2

five positive integers. It follows that one of u?,v?, —uv, —vu, —ef must be bounded by

A/5. Among |ul|, |v],|e|,|f], one must be bounded by /A/5. O

16



Figure 1.3: The topograph of Q(z,y) = 22 — 3y?, exhibiting a periodic river. Solutions

2

to Pell’s equation 22 — 3y% = 1 are found along the riverbank.

17



Chapter 2

Dilinear groups

The goal of this chapter is to prove there is an isomorphism from the Coxeter
group (20,00) to the arithmetic group PDLo(R,) = DL2(Ry)/{£1l} when o = 2,3.
This isomorphism was what made us look for applications of Coxeter groups to arith-
metic. Here we introduce the dilinear group DLo(R,), describe its generators and prove

the desired result.

2.1 Dilinear algebra

Definition 34. Let 0 > 1 be a square-free positive integer, and let R, = Z[ /o] be
the quadratic ring of discriminant 40. We define the dilinear group DLs(R,) to be the

group of all matrices

€ GLs(R,) such that (a,d € Z-+/o and b,c € Z) or (a,d € Z and b, c € Z+\/07).
c d

Moreover, we define PDLs(R,) = DL2(R,)/{£1}.

18



Notation 35. Let DL; (R,) be the subset of DLa(R,) consisting of matrices with a,d €
Z-+/o and b,c € Z and let DL (R,) be the subset of DLs(R,) consisting of matrices

with a,d € Z and b,c € Z - \/o.

Remark 36. DL3 (R,) is an index-two (hence normal) subgroup of DLy (R, ) and DL; (R,)
is its nontrivial coset. Morevoer, DLj (R,) is G L2(Q(y/))-conjugate to a congruence

subgroup of GLo(Z): if g = diag(1, /o), then
. B
gDL3 (Ry)g~ =To(0) = € GLy(Z): vy € oZ
Lemma 37. Suppose that u,v € Z. Then
GCD(u,vy/o) =1 in R, if and only if GCD(u,ov) =1 in Z.

Proof. Recall that GCD(u,v+/0) =1 in R, means that the pair {u,v\/o} generates the

unit ideal in R,. That is, there exist x + y\/0, s + /o € R, such that
(z 4+ yvo)u+ (s +rvo)vo =1,
which we can rewrite as
(zu+ rov) + (yu + sv)/o = 1.

This is equivalent to xu+rve = 1 and yu + sv = 0. In other words, there exist

x,r € Z such that zu + r(ov) = 1. That is, GCD(u,ov) =1 in Z. O

Definition 38. A divector over R, will mean a vector in R2 of red or blue type. Red

divectors are those of the form (u,vy/c) for some u,v € Z. Blue divectors are those of

19



the form (uy/a,v) for some u,v € Z. Let RY denote the set of divectors and let R
and R'glue denote, respectively, its subsets of red and blue divectors.
A red divector (u,vy/0) is called primitive if GCD(u,ov) = 1. A blue divector

(uy/o,v) is called primitive if GCD(uo,v) = 1.

Theorem 39. The dilinear group DLs(R,) acts (by matriz multiplication) transitively
on the set of primitive divectors, and its subgroup DL;’(RU) acts transitively on the set

of primitive red (or blue) divectors.

Proof. To see that DLs(R,) acts on the set of primitive divectors, note that a matrix
in DLs(R,) is invertible and its determinant is an integer. Hence a matrix in DLs(Ry)
has determinant equal to =1 and thus it sends primitive divectors to primitive divectors.

It remains to prove that the action of DLy(R,) on primitive divectors is transi-

0 1
tive. Since the matrix € DLs(R,) swaps primitive red and blue divectors,

-1 0

it suffices to show that DL;“(RU) acts transitively on the set of primitive red vectors.
Let (u,v+/0) be a primitive red divector. Since GCD(u,ov) = 1, there exist
s,t € Z such that su —tve =1 and

) ()

vV/o

In other words, for any primitive red divector (u,vy/c) there exists a matrix

M € DL3 (R,) such that M - ((1)) = (v\‘%)

Remark 40. The rows and columns of a matrix in DL9(R,) are primitive divectors.
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2.2 Generators for PDLy(R;) and PDLy(R3)

When 0 = 2 or ¢ = 3, Johnson and Weiss [5, §4| present PDLs(R,) by
generators and relations, giving an isomorphism between PDLs(R,) and the Coxeter
group (20,00). In this section we give an algebraic proof of their claim about the set of

generators for the dilinear groups.

Theorem 41. If 0 =2 or o = 3, then DLa(R,) is generated by the triple of matrices,

0 1 Vo 1 10

We will use the modified division algorithm for integers (which gives the re-
mainder of least absolute value) to help us determine the quotient and remainder when

dividing a by by/o or a/o by b, where a,b € Z.
Lemma 42 (Division with remainder in Z U Zy/0). Let 0 = 2,3.
(a) For all a € Z, byJo € Zy/o, b # 0, there exist g\/o € Z+/o,r € Z such that
a=q\yo-byo+rand |r| <|b\/ol
(b) For all ay/o € Zy/o, b € Z, b# 0 there exist ¢\/o,r\/0 € Z+/o such that

av/o = q\/o -b+ro and |r\/o| < |b|.

Proof. (a) By the modified division algorithm, given integers a and bo with b # 0
there exist ¢,r € Z such that a = ¢-bo +r and |r| < [%|. Then we obtain
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g

a = q\/o - by/o + r by simply rewriting 0. Moreover, since § < /o for 0 = 2,3,

we get that |r| < |%2| < |by/a].

(b) By the modified division algorithm, given a € Z and b € Z, b # 0, there exist
q,7 € Z such that a = ¢ - b+ and |r| < |5|. Then we get a\/o = q\/o - b+71\/0
by simply multiplying both sides by \/o. Moreover, since g <1 for o =23, we
get that [r/a] < |22 < [b].

O

Definition 43. For a red divector a,. = (u,v4/0) and a blue divector ap = (u+/o,v) we
define

size(a,) = max(|ul, |[vy/o|) and size(ap) = max(|uy/a|, [v]).
We can now give the proof of the main result of this section.

Proof. (of Theorem 41)

a b
Let v = € DLy(R,). Then either v € DLy (R,) or v € DL; (Ry).

c d
We start by writing down the effect of multiplying + from the left by some

elements of the subgroup generated by rg,r; and rs:

e 71y changes sign in the first row,

e 75 switches rows,

1 0
o 11y = subtracts /o times the first row from the second row, and

Vo 1
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® ToriTTY = subtracts /o times the second row from the first row.

Since ro transforms a matrix in DL, (R,) into a matrix in DL] (R,), it is

u  x\o
enough to consider only matrices in DLJ (R,). Let v = € DL (R,).

o oy

Let o = <v\1;5> denote the first column of v. We can assume u and v are
non-negative integers since we can use rg and 79 to change sign. Moreover, since v €
GLs(R,), the entries in a column of  cannot be both zero.

If either of the entries of the primitive divector « is zero then we must have

) 1 zyo

o= (0). This means that « is a matrix of the form . Since its determinant
0 vy
must be in ZNZ[/o]* = {£1} we have y = £1. Thinking about the effect of ry, 2 and

powers of r1rg on a matrix we can easily write

1 ayo 10 1 a0 10

(riro)re = or (riro)*rore =
0 1 0 1 0 -1 0 1

1 o 1 zo

That is, = ro(r179) " and = roro(r17m0) 7.
0 1 0 -1

Now we assume that both entries of a = (v\l;E) are nonzero. We want to show
that we can multiply « on the left by enough copies of rg,r; and r9 to obtain a vector
of smaller size. If we can reduce the size then we can eventually obtain the divector

((1)) of smallest possible size (size one). This means that eventually multiplication on
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1 xy/o

the left by enough copies of rg,r1 and 79 gives a matrix of the form . We
0 y

showed in the above paragraph how this type of matrix can be written as a product of
the matrices rg,r1 and rs.

If vy/o > u, by Lemma 42 there exist g\/o, /0 € Z+/o such that

vVo = qyo -u+ryo and |[r/o| < |ul.

Then
(rir2)la = “ = ") = B and size(f) < size(a).
v\/o —q\/o - u rvo
If v\/o < u, by Lemma 42 there exist ¢g\/o € Z+\/o,r € Z such that
u=g\o-vyo+rand |r| <|vyol
Then

(roriraro)la = <“ N q;/\z ”ﬁ> - (Jﬁ) = B and size(B) < size(a).

2.3 Dilinear groups and Coxeter groups

Replacing each matrix r; in Theorem 41 by the equivalence class p; of matrices

+r; we obtain the following result.

Theorem 44. If 0 =2 or 0 = 3, then PDLs(R,) is generated by

-1 0 -1 0 0 1
PO = y P1 = y P2 =



Recall that the Coxeter group (20,00) is the group generated by so, s1, s2,

subject to the relations

3(2) — 3% = S% = 1’ (8182)20 - 17 (8082)2 =L

Define ¢ : (20,00) — PDLy(R,) by so — po, s1 + p1 and s > pa. It is easy to

check that the generators of PDLy(R,) satisfy the Coxeter relations p3 = p? = p3 = 1,

)29 =1, (pop2)? = 1. Thus ¢ is a surjective homomorphism.

(p1p2

The goal of this section is to show that ¢ is an isomorphism if ¢ =2 or o = 3.
To accomplish this, we will show that pg, p1 and ps act as reflections in the sides of a
hyperbolic triangle.

Let H = {x+iy | y > 0} denote the Poincaré upper half plane. Recall that lines
in H are Euclidean semicircles with centres on z-axis or Euclidean lines perpendicular
to the z-axis.

A hyperbolic reflection is either a Euclidean reflection in a vertical line or an
inversion centered at some point on the z-axis (when the hyperbolic line is represented
by a semicircle).

The inversion with respect to the circle C' with center (c,0) and radius r is the
mapping f : CU{oo} - CU{oo} interchanging the points ¢ and co, and such that for
each point z € C\ {c}, f(z) = w lies in the line determined by z and ¢, in such a way

that

|z —¢| - |w—¢| =72
The circle C' can be recovered as the fixed point set for f. The general formula for the
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inversion f across a circle with radius 7 and center (c,0) is given by:

fz)=r*Gz=¢)'+ec

Let Isom(#H) denote the group of isometries of the hyperbolic plane. Let

PS*Ls(R) = S*La(R)/{£1} where S*Ly(R) is the group of real matrices of determinant

a b
+1. For z € H and v = € PGLs(R) define

c d

(az + b)(cz + d)~tif det(y) >0
1(2) =

(az +b)(cz 4+ d)~ 1 if det(y) < 0.

This defines an isomorphism from P.S*La(R) to Isom(H) (Theorem 1.3.1, [6]).
Since PDLs(R,) is a subgroup of PS*Ly(R), any v € PDLy(R,) is uniquely determined
by the corresponding isometry of the hyperbolic plane.

The following equations show that py acts as the reflection in the y-axis, p;

acts as the inversion across the circle of radius —= centered at (—%, O) and po acts as

v

the inversion across the unit circle centered at origin.

_—1 0
po(z) = z=-z,
0 1
-1 0 1\2 7\ 1
pi(z) = ceeaweren = () (e 1) -1,
. () (%) -
-0 1
p2(z) = z=(2)""
1 0
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More precisely, pg, p1 and p2 act as reflections in the sides of a (?)O —90°—-0°

hyperbolic triangle. See the triangle OAB in Figure 2.1 and Figure 2.2 in the case 0 = 2

and o = 3, respectively.

Figure 2.1: 45° — 90° — 0° triangle

Let T denote the hyperbolic triangle OAB and let Sy = OA, S; = OB and
So = AB denote its sides. Then p; corresponds to the reflection in the side S; for
i € {0,1,2}. The angles of T are 6(S1,52) = /20, 0(Sp, S2) = m and 6(Sy, S1) = 0.
Since they are all submultiples of m, Theorem 8 implies that the group generated by the
reflections in the sides of the triangle 7' (i.e PDL2(R,)) is a discrete reflection group
with respect to T

Moreover, for each pair of indices 4, j such that S; and S; are adjacent, let

kij = ﬂ/@(SZ,S]) That iS, klg = 71'/9(51,52) = 20, kog = W/@(SQ,SQ) =2 and k01 =
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Figure 2.2: 30° — 90° — 0° triangle
7/0(Sp, S1) = 0o. By Theorem 9,
(5187 =1, (55, = 1)

is a group presentation for PDLs(R,) under the mapping S; — p;.
Thus the map ¢ : (20,00) = PDLo(R) defined by ¢(s;) = p; for j =0,1,2,
(described in the beginning of this section) is an isomorphism. This proves the following

result.
Theorem 45. If o0 =2 or o = 3, then ¢ : (20,00) = PDLy(R,) given by
50 > po, $1 +> p1 and sz > pa

18 an isomorphism.
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Chapter 3

Dilinear Topograph

3.1 Divectors, dibases and pinwheels

In this section we define a “dilinear” variant of Conways’s topograph and prove

basic facts about it. Assume ¢ =2 or o = 3.

Definition 46. The dilinear topograph is the incidence system of type I = {0, 1,2},

consisting of:

e Faces (elements of type 2) are primitive lax divectors over Ry, i.e., primitive di-

vectors modulo £1.

e Edges (elements of type 1) are lax dibases: unordered pairs of lax divectors gener-

ating R2 as an R,-module.

e Points (elements of type 0) are lax pinwheels: cyclically ordered 2o-tuples of lax

divectors such that any adjacent pair forms a lax dibasis.
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Two elements are incident if one contains another.

Remark 47. e Note that +(v/2, 1) and +(—+/2,1) are the same as lax divectors.
We prefer +(1/2, —1) over +(—+/2,1). More precisely, when writing a lax divector
we prefer to make the first entry positive or zero. When the first entry is zero, we

prefer the second entry to be positive. This means we prefer (0, 1) over (0, —1).

e Let (£7, £w) be an ordered lax dibasis. This means that the divectors ¥ and @
have opposite color and form the columns of a matrix in DLy(R,) of determinant

+1. Let M(¥, %) denote this matrix and let M|, @] be its image in PDLy(R,).

e Given an ordered lax dibasis (£7, +) there are four associated matrices in D La(R,):
M(U, W), M(¥, =), M(—7, %) and M(—0, —w). These four matrices correspond

to two distinct elements MV, W] and M[—¥, @] in PDLa(Ry).
Proposition 48. The group PDLs(R,) acts transitively on the set of lax dibases.

Proof. Since the proof will be the same for any choice of order and signs of the divectors
in a lax dibasis {+, £}, it is enough to prove the result for the ordered dibasis (¥, ).

We need to show there exists a matrix G € PDLy(R,) such that the "home
dibasis" ((1,0),(0,1)) is sent to (¥, &) under the action of G. That is, G sends (1,0) to

¢ and G sends (0,1) to . Equivalently,

G- M(1,0),(0,1)] = M[5,].

Note that M [(1,0), (0,1)] is the identity in PDLs(R,). Thus G = M [¥, ] . O
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Theorem 39 proves that the dilinear group acts transitively on the set of prim-
itive divectors, which implies that PD Lo (R, ) acts transitively on the set of faces of the
dilinear topograph. The above result proves that PDLo(R,) acts transitively on the set

edges.

Proposition 49. If +¥ is a primitive lax divector then there exist infinitely many lax

primitive divectors £ such that {0, £} is a lax dibasis and these have the form

—

W =wy+nvo-v fornéelZ.

Proof. Let £7 = (a,by/0) be a lax primitive red divector. Then GCD(a,cb) = 1 in

Z. Assume that {+0 = (a,b\/0),+W = (z/0,y)} is a lax dibasis (i.e. the regions
a x\/Jo
corresponding to £7 and £ share an edge in the topograph). Then =+1

byvo y

implies

(—ob)z + (a)y = £1.

Since GC'D(a,ob) = 1 this linear Diophantine equation has a solution. If (xg,yp) is a
solution of this equation then +wp = (z9+/0,yo) is a blue divector such that {+, £wp}
is a lax dibasis. Since the other solutions to the above equation are of the form (z¢ +

na, yo + n - ob) for some n € Z the vectors of the form +uw = ((xo+na)y/o,yo+n-ob) =

(x0V0,90) +n+/7 (a,b\/o) form a lax dibasis together with @. O
f f
wo b

This shows that every face is incident with infinitely many edges, and these

form an endless line.
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Proposition 50. Let ¥ and @0 be two divectors forming a dibasis. Then there are two

pinwheels containing the lax dibasis {+U, £w}. These two pinwheels are:

=2 (iﬁ, 40, £ (T + ewV/2), (T + 617\/5))

c=3: <iz7, LT, (5 + edV/3), £(20 + €6vV/3), £(25 + ed/3), £ (7 + eﬁﬁ)) :
where e =1 and e = —1.

Proof. Since the group PDLs(R,) acts transitively on the set of primitive lax divectors
it suffices to assume +¢' = £(1,0) and £a = (0, 1).

Consider the case o = 2. Let {£(1,0),%(0,1), £, =i} be a pinwheel containing
the lax dibasis {£(1,0),£(0,1)}. Note that @ and £(1,0) both form a lax dibasis with
+(0,1), and these dibases are adjacent lines in the dilinear topograph (they share the
pinwheel as an endpoint). By Proposition 49, i has the form +((1,0) + €y/2(0,1)) for
e € {—1,1}. The same reasoning shows that ¢ has the form +((0,1) + €/+/2(1,0)) for
€ e{-1,1}.

Since the divectors @ and ¢ are adjacent, they form the columns of a matrix in

1 €v2
DLy(R,) of determinant +1. Thus = 41, which implies 2¢'e = 1+ 1. Since

V2 1

e, € {—1,1}, we must have e = ¢. The case o = 3 can be proved in a similar way. [

The above result proves that every edge is incident to two points. The chambers
of the dilinear topograph are triples (£, D, p) with £¢ a lax divector, D = {+, £}

a lax dibasis containing +¢" and ¢ a pinwheel containing D.
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+(v2,-1)\ £(1,0) [ £(v2,1)

+(1,-v2) | +(0,1) | £(1,v2)

(a) o =2 (b) o =3
Figure 3.1: Cell in the dilinear topograph containing the home lax dibasis.

Remark 51. By Proposition 50 the home lax dibasis (£(1,0),£(0,1)) is contained in
exactly two pinwheels, which can be seen in Figure 3.1. The pinwheel we placed on
the right side will be called the home lax pinwheel and it will be denoted gpg. More

precisely,

(£(1,0), £(0,1), £(1,v/2), £(/2, 1)) o=2

£0
(£(1,0),4(0,1), £(1,v3), £(v/3,2), £(2,V3), £(/3,1)) o =3.

The flag Fo = (vo = £(1,0),Dy = (£(1,0),+(0,1)), po) containing the home

lax pinwheel will be called the home flag.

By Proposition 50 the ordered dibasis D = (fwv, £w) is contained in exactly two

pinwheels starting with £¢. In the 0 = 2 case, p™ = (iﬁ’, +10, (7 4 0v/2), £(TV2 + 117))
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and p~ = (i@’, +0, £(7 — 6V/2), £(TV2 — 117)) Similarly, in the o = 3 case,

ot = (iﬁ, 147, £ (7 + GV3), £(5Y/3 + 20), £(20 + TV3), £(0V3 + w))

+7 +(7V2 + @)
+(20 + WV/3)

+(TV/3 + 20)

(a) o =2 (b) o =3

Figure 3.2: Cell in the dilinear topograph containing the lax dibasis (+v, £w) with the

pinwheel pT placed on the right side.

Proposition 52. The group PDLs(R,) acts transitively on the set of chambers of the

dilinear topograph.

Proof. Let F = (9, D = (v, £W), p) be a chamber (i.e a flag of type I = {0,1,2}).
We need to show there exists a matrix G € PDLs(R,) such that the flag F is sent

to the home flag Fo = (vo, Do, o) under the action of G. It is easy to check that the

1

matrix M[7,@]”" sends +¢ to vy and D to Dy. Moreover, it must send p to one of the
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endpoints of the edge D (since the group action preserves incidence). More precisely, it
sends g to pg or the other endpoint ;. In the first case, G = M7, @]~ is the desired
matrix. In the second case, G = poM|[v,w] ™. Here pg is the reflection matrix defined
in Section 2.3.

O

In the beginning of this section we defined the dilinear topograph as an inci-

dence system. The following result shows that it is an incidence geometry.
Proposition 53. Every mazximal flag of the dilinear topograph is a chamber.

Proof. A maximal flag is a flag not properly contained in any other flag. That means
we need to show that every partial flag can be completed to a chamber. More precisely,

we need to make sure that the following hold:

(a) Every vertex is contained in a chamber.

(b) Every edge is contained in a chamber.

(c) Every face is contained in a chamber.

(d) Every pair (v, e) of a vertex incident with an edge can be completed to a chamber.
(e) Every pair (v, f) of a vertex incident with a face can be completed to a chamber.

(f) Every pair (e, f) of an edge incident with a face can be completed to a chamber.

To see why (a) is true note that a vertex v is a pinwheel. We can take any lax
dibasis e contained in the pinwheel v and obtain a (nonmaximal) flag (v,e). Then take
any primitive lax divector within e. That gives a face f for which (v, e, f) is a chamber.
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Since an edge is a lax dibasis, (b) follows from Proposition 50. By Proposition
49, any primitive lax divector can be completed to a lax dibasis. Since a face f is a
primitive lax divector, (c) follows from Proposition 49 and Proposition 50. The claims

d), (e), (f) are easy to check. O
(d), (e), ( y

3.2 Coxeter geometry

Assume o = 2 or 0 = 3. In the previous section we showed that the dilinear
topograph is an incidence geometry. Let X denote its set of points, X' the set of edges,
and X? the set of faces. Let X = X% X! U X2, By a slight abuse of notation, we
will also write X to denote both the set of elements of the incidence geometry and the
incidence geometry itself.

Let (W, S) denote the Coxeter system with W = (20, 00) and S = {sq, s1, s2}.
Recall that W denotes the parabolic subgroup of W generated by s € S\ {s;}. Let
Xy = T(W,{W9 W' W?2}) denote its coset incidence geometry. By slight abuse of

notation, we also let Xy denote the underlying set of the geometry. That is,
2
Xw = |_| Xy where Xy, = W/W".
i=0

We proved in Section 2.3 that ¢ : (20,00) — PDLy(Ry) given by ¢(s;) = pj

for 7 =0, 1,2, is an isomorphism. Recall that

-1 0 -1 0 0 1
PO = yP1 = y P2 =
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+(1,0v/3)

+(1v2,1) & :
‘ £(2,-1V3)
\§ ‘gt(l\/ﬁ. -2)
+(1,1v2)

é\i(l\/ﬁv _1)
?/iu,—l\/i)

£(1V2,-3)

i(“ﬁ)é

+(1v3,2)

+(0v/2,1) +(0v/3,1)

Figure 3.3: The geometry of primitive lax divectors, lax dibases, and pinwheels for Z[/2]

and Z[v/3], respectively.

Recall that vg = £(1,0) denotes the home face, Dy = (£(1,0),£(0,1)) the
home edge and g the home vertex. The following lemma gives a description of the

stabilizer of the home vertex/edge/face.

Lemma 54. Let G = PDLy(R,) and let G* denote the parabolic subgroup of G generated

by p € {po, p1,p2} \ {pi}. The following hold:
(a) Stabg(vy) = G*
(b) Stabg(Dy) = Gt

(¢) Staba(po) = GO,

uy/o oz
Proof. Let y € G. If y = it is easy to see that it can’t be in Stabg(vp).

v oy o
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T N u o 0 /o
If v = € Stabg(vg) then = =
U\/E Yy U\/E Y 1 Y
0 1 0
. Since v has determinant +1 we get v = , which we can write as
1 vyo 1

(ror1)¥. We have Stabg(vg) C (rg,m1) = G? and we can check that 79,71 € Stabg(vp).

Thus (a) is proved. Similar arguments can be used to prove (b) and (c). O

Theorem 55. The geometry X is isomorphic to the coset geometry Xw of the Coxeter

group (20,00).

Proof. We need to show there exist an isomorphism of incidence systems 5 : Xy — X.
Since the set Xy is the disjoint union of the sets XI(/)V> X%V and X%V, the map S can be
described by a triple of maps 3° : XI(/)V — X, gl XI}V — X' and B2 : X%V — X2

Let 2° = pg (home vertex), 2! = Dy (home edge) and z? = vg (home face).

Let i € {0,1,2}. Given a coset wW® € X}},, define 8" : X{;, — X" by
BwW') = p(w)a'.

Since G = PDLs(R,) acts transitively on the set of vertices and ¢ is surjective
it follows that ° is surjective. Now we want to show 37 is injective. Assume S (w;W?) =
Bi(waW?) for some cosets wi Wi woW' € Xjy,. That is, ¢(wi)z’ = ¢(we)x?, which is
equivalent to ¢(ws, "wy)x’ = x'. In other words, ¢(w, 'w;) € Stabg(x') = G* = (W),
which implies wy W? = woW?*. Thus 4’ is a bijection.

Clearly [ preserves the type. It remains to check that 8 preserves incidence.
That is, if two cosets of W are incident then their images under [ are also incident. Let
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s,t € {0,1,2} with s < t. If w/'W* is incident to w” W* then w/'W* nw Wt # ). Let
w e wWNw Wt That is, wW?® = w'W* and wW' = w"W*. Then B%(w'W?*) =
B5(wW*) = ¢(w)z® and Bt(w W) = BH(wW?) = $(w)xt. Since 2t C x*, we also have

12

d(w)xt C p(w)z®. This shows that ¢(w’)x® is incident to ¢p(w ). O

We were able to show that not only is there an isomorphism of groups - from
the Coxeter group to the arithmetic group (dilinear group) - but there is an isomorphism
of geometries - from the Coxeter geometry to the geometry of arithmetic flags. The next

two chapters include applications to number theory.
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Chapter 4

Binary quadratic diforms

4.1 Diforms and their connection to pairs of BQFs

We introduce a special type of non-integral BQFs defined on the set of divectors
and show how they are connected to pairs of (integral) BQFs obtained by restricting to

red /blue divectors.

Definition 56. Let o be a square-free positive integer. A binary quadratic diform

(BQD) is a function Q : RY — Z of the form
Q(z,y) = az? + bvoxy + cyz, where a,b,c € Z.
We define the discriminant of @ by A(Q) = o(b?c — 4ac).

We restrict (x,7) to be a divector in R2, so the values of Q are integers.

Restricting @@ to red and blue divectors yields a pair Qred, @biue of BQFs over Z of
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discriminant A; explicitly,
Qred(u,v) := Q(u,v/7) = au® + bouv + cov?,
Qbiue (1, v) = Q(uv/o,v) = acu® + bouv + cv?.

Definition 57. We say Q is a primitive BQD if both Q,.cq and Qpye are primitive BQFs.

Equivalently, GCD(a, ob,c) = 1 and o divides neither a nor c.
Define another BQF of discriminant A,

ou? — %UQ if Ac™! =0 mod 4;

Aa(u,v) =

ou® + ouv — AA:UUZ v? if Ac™! # 0 mod 4.

Lemma 58. If Q is a primitive BQD of discriminant A, then Aa is primitive too.

Proof. Assume GCD(a,ob,c) = 1 and o divides neither a nor c.

Let o = 2. Assume Ao~! = 0 mod 4. Then GCD(0, —£) = GCD(2, ac — %)

equals 1 or 2. Since 2 { ac, GCD(2, ac — %) = 2 implies % is an odd integer. We get a

contradiction with 2 = 0,1 mod 4 for any b € Z . Thus we must have GCD (o, —%) =1

Now assume Ao~! # 0 mod 4. When GCD(o, —AZUUQ) = GCD(2, % —ac) =2 we get

a contradiction with 1 — 4> = 0,1 mod 4. This shows A is primitive.

Let 0 = 3. Assume Ao~! = 0 mod 4. Then GCD(o, f%) = GCD(3, ac — %)

equals 1 or 3. But GCD(3,ac— %) = 3 implies ac = # mod 3. We get a contradiction

since 3 { ac and # = 0 mod 3. Thus we must have GCD(o, —%) = 1. This shows
Ap is primitive in the case Ac~! = 0 mod 4. Similarly, it can be checked that Aa is

primitive in the case Ac~! # 0 mod 4. O
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Notation 59. Write CI(A) for the group of SLa(Z)-equivalence classes of primitive
BQFs of discriminant A, following Bhargava [7, Theorem 1]. If Q is a BQF of discrim-

inant A, write [Q] for its SLa(Z)-equivalence class.

A binary quadratic form Q(z,y) = ax?+bry+cy? is called ambiguous if its first
coefficient a divides its middle coefficient b. An ambiguous class is one which contains an
ambiguous form. The primitive ambiguous classes are those which are self-inverse under
composition. Since Aa is an ambiguous form, its class in CI(A) satisfies [Aa]? = 1. We
give another characterization of the class of Aa in the following lemma. We will show

that [Aa] is the unique class in C1(A) which represents o, when o | A.

Lemma 60. If Q is a BQF of discriminant A that represents o, and o | A, then

(@] = [Aa].

Proof. If Q represents o, then [Q] = [ou? 4 buv + cv?] for some b,c € Z. Since o is a
square-free integer and o | A = b?> — 40c we have that b is a multiple of ¢ too. Thus
[Q] = [ou? + oBuv + cv?] for some . Since this is an ambiguous class it must be equal
to either [ou + kv?] or [ou? + uv + kv?] for some k € Z, depending on the discriminant.

If [Q] = [ou + kv?] we have A = —40k (i.e. k = —A/40) and Ao~ = 0 mod
4. If [Q] = [ou® + ouv + kv?], then A = 0% — 4ok (ie. k = —(A — 0?)/(40)) and

Ao~ =0 — 4k # 0 mod 4. Thus [Q] = [Aa]. O

Notation 61. Let SDL3 (R,) be the subgroup of DL (R,) consisting of matrices of

determinant one.
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Definition 62. We say that two diforms @Q, Q" are SDL3 (R, )-equivalent if there exists
n € SDLF (R,) satisfying Q' (¥) = Q(n - ¥) for all divectors ¥. We write [Q], = [Q']»

when the diforms @ and Q' are SDL;r (Ry)-equivalent.

Proposition 63. [Q], = [Q']s implies [Qred) = [Qleg] and [Qblue] = [Qh1u0)-

Proof. Let g = diag(1,+/0). Then

Qred(u’v) = Q(uv \61)) = Q(g ’ (u7v))'

Let M denote the Gram matrix of the quadratic form @, and M,.q the Gram matrix

of the quadratic form Qeq (viewing them as quadratic forms R? — R). Then we have
t

Qred(uav) = (U U) 'Mred : (Z) and Q(g (’LL, U)) = (g ' (Z)) Mg (:j) Note that gt =g

Thus

Mieag=9-M-g.

Now assume [Q], = [Q'],. That is, there exists n € SDLj (R,) such that

Q' (W) = Q(n - W) for all divectors . The Gram matrix of Q' is
M' = n'Mn.
The Gram matrix of Q! is
M/ _ M/ _ tM _ t —1 M —1 _ t —lM —1
red = gM'g=g(n"Mn)g=gn'g” (gMg)g~ ng=gn'g~ Mreag~ 19
Thus M|, = (97'19) Mreag™'ng. So to show that Qioq is SLy(Z)-equivalent t0 Qred,

u o
we must check that g7'ng € SLa(Z). Let n = € DL§(R,). Then

vo oy
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1 0 u  x\o 1 0 u xo

g ng = = € SLy(Z). O
0 % o oy 0 o vy

The following result shows how the pair Qyeq, @biue of BQFs can be related

through Aa whenever o | A.

Theorem 64. Given a primitive BQD Q(x,y) = az?+by/oxy +cy? of discriminant A,
one has [Qred] = [AA] - [Qblue] in CI(A). Conversely, if Q1,Q2 are primitive BQFs of
discriminant A, and o | A, and [Q1] = [Aa] - [Q2], there exists a primitive BQD Q such

that [Qred] = [Ql] and [leue] = [QQ]

Proof. The identity [Qreqd] = [AA] - [@blue] can be proved using a Bhargava cube.

bo

NN
s
B \

Let (M;, N;) be the partition of this cube into a pair of two-by-two matrices, in a front-
back, left-right, and top-bottom fashion according to whether i = 1,2, 3 respectively,
as in [7, §2.1]. From these matrices, Bhargava constructs a triple of BQFs given by

Qi(u,v) = —det(M;u — N;v). More precisely,

Q1(u,v) = au® + bouv + cov?;

Q2(u,v) = cu? + bouv + aov?;

Qs(u,v) = ou® + bouv + acv®.
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Since Q(z,y) = az? + b\/oxy + cy? if a primitive diform of discriminant A, the BQFs
Q1,Q2 and Q3 are primitive and have discriminant A also. By [7, Theorem 1], we have
[Q1] - [Q2] - [@3] = 1 in CI(A). Observe that Q) is precisely Qreq. Next, observe that Qo
is related to Qpue by switching u and v; it follows that [Q2] = [Qpiue] ! By Lemma 60,

[Q3] = [Aa]. Since [Aa]? = 1, we have

[Qred] = [AA] - [Qblue] and [Qplue] = [AA] - [Qred]-

For the converse, suppose that Q1 and @)y are primitive BQFs of discriminant
A, o | A, and [Q2] = [AA] - [@1]. If Q1 is any BQF of discriminant A, then we want to
show a primitive BQD @ with [Qred] = [@1] can be defined. Since [Q2] = [AA] - [Q1],
the identity [Qpie] = [Aa] - [@Qrea] Will imply that [Qpie] = [Q2]-

Write Q1(u,v) = au? + Buv + yv?, so o | 2 — 4ay. If 0 | v, then o | 8, and

Q1 = Qreq for the diform

Q(z,y) = az® + Bo~ oy +vo 'y’

If o 1 v, then there exists an integer v satisfying the congruence o+ Bv+~v? = 0 mod o.
One may check this working one prime divisor of ¢ at a time; the quadratic formula
applies for odd prime divisors. Modulo two, 2 | o | 32 — 4ary implies that 3 is even and
the congruence has a solution. Hence Q1(1,v) =0 mod o.

Since Q1 represents a multiple of o, Q1 is equivalent to a form au?+ ' uv+cov?.

The fact that o divides the discriminant implies 3’ = bo for some b € Z. Thus, whether

o divides 7 or not, [Q1] = [Qyeq] for some diform Q. O
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Corollary 65. Assume o | A. The map Q — (Qred, @blue) Yields a surjective function

from the set of SDLJ (R,)-equivalence classes of BQFs of discriminant A to the set of

ordered pairs ([Q1], [Q2]) in CL(A) satisfying [Q1] = [Aa] - [Q2].

4.2 Dilinear topographs of BQDs

Here we return to the assumption that ¢ = 2 or ¢ = 3. The topograph of a

BQD @ is obtained by replacing each primitive lax divector by the corresponding value

of Q.

4.2.1 Arithmetic progression rule

b = Q(v) Q(TV2 + W)

f = Q25+ wv/3)

e = Qi3 + 2)

&' = Qi — wV/3) d = Qi+ wV/3)

Figure 4.1

We describe here some properties that can be used to quickly obtain the to-
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pograph of a BQD, beginning with only the values around a vertex. The polarization
identity

QU1 + v2) + Q(1h — ta) = 2(Q(%h) + Q(v2)),
holds for any quadratic form @) and any two-dimensional vectors ¥, ¥5. This formula

also tells us that the sequence

Qv — v2), Q(v1) + Q(2), Q(th + v2)

is an arithmetic progression with step size given by the symmetric bilinear form associ-
ated to the quadratic form Q. That is, Bg(71, V2) = Q(U1 +72) — Q(01) —Q(¥2). Conway
verifies and uses the polarization identity in |2] to obtain his Arithmetic Progression Rule

for the topograph of a BQF.

Theorem 66. At every cell in the topograph of Q, as in Figure j.1, one finds arithmetic

progressions as below.

o = 2: The triples (a’,2b+c,a) and (d',b+2c,d) are arithmetic progressions of the same

step size.

o = 3: The triples (a’,3b + ¢,a) and (d',b + 3¢,d) are arithmetic progressions of the
same step size 6 and the triples (f',4b+ 3¢, f) and (€’,3b + 4c, e) are arithmetic

progressions of the same step size 29.

Proof. In both cases o = 2,3, the integers a’,b,c,a of a cell arise as values of @ as

displayed in Figure 4.1. More precisely,



Note that Q(y/o?0) = 0Q(¥) = ob, and Q(\/ow) = cQ(wW) = oc. Then the

polarization identity implies that the sequence

a' = Qo — ), ob+c=Q(Vov) + Q(w), a = Q(Vou + )

is an arithmetic progression with step size ¢ := Bg(y/o¥, W). Moreover, the sequence

d' = Qv — Vow), b+oc=QV) + Q(Vow), d= Q7+ o)

is an arithmetic progression with step size ¢’ = Bg(¥, v/ow). Note that § = ¢’. Hence
(a/,0b+ c,a) and (d',b+ oc,d) are arithmetic progressions of the same step size.
Similarly, when o = 3, the polarization identity can be used again to show
that f' = Q(20 — wWv3), 4b+ 3c = Q(20) + Q(WV3), f = Q(20 + V3%) and ¢ =
Q(UV3—2), 3b+4c = Q(vV/3)+Q(2W), e = Q(UV/3+21) are arithmetic progressions

of the same step size 20. O

We draw an arrow on each edge to represent the direction of increasing pro-
gressions, or a circle if all progressions are constant. Figure 4.2 displays an example.

The climbing principle is the same as Conway'’s.

Corollary 67. Suppose b, ¢ in Figure 4.1 are positive. Moreover, assume that the step
size § of the arithmetic progressions is positive. Then the other values around the vertex

P are also positive, and the edges that emerge from P all point away from P.

With the same notation as in Figure 4.1 (same as in the vertex diagrams given

below) we obtain linear relations among the values around a vertex in the topograph.
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>

Figure 4.2: Topograph for the binary quadratic diform Q(z,y) = 22 — 2v/2zy + 3.

49




Corollary 68. Wheno =2, a+c=b+d. Wheno =3, a+d=b+e=c+ f and also

at+ct+te=b+d+ f.

Proof. When o = 2, the triples (a’,2b+c¢,a) and (d’, b+2¢, d) are arithmetic progressions
of the same step size 6. Since § = a — (20 +¢) = d — (b + 2¢) we get the relation
at+c=b+d.

When o = 3, the triples (f’,4b+ 3¢, f) and (¢/,3b + 4c, e) are arithmetic pro-
gressions of the same step size 26. Since 26 = f — (4b+ 3¢) = e — (3b + 4c¢) we get the
relation c+f =b +e.

Moreover, the triples (a’,3b + ¢,a) and (d',b + 3¢,d) are arithmetic progres-
sions of the same step size 6 = a — (3b4+ ¢) = d — (b + 3¢). This gives the relation
a=d+ 2(b—c). The relation a+ d = b + e follows from 20 =a— (3b+¢)+d— (b+
3c) = e—(3b+4c). From a = d+2(b—c) and b—c = f—e we obtain a = d+(b—c)+(f—e),

which gives the relationa+c+e=b+d +f. O

4.2.2 Local formulas for discriminant

Here we define the discriminant of a cell in the dilinear topograph of a BQD @

and show it is equal to A(Q).
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Definition 69. If 0 = 2 then

= (20— )% —ad'.

Note that we get the quantity (2¢ —b)% — dd’ when we swap the top and bottom
values of the cell. Moreover, both (2b — ¢)? — aa’ and (2¢ — b)2 — dd’ remain unchanged
after swapping the left and right pinwheel (i.e. after swapping a,a’ and d,d’).

Using the relations between the values in a cell (given by the arithmetic pro-
gressions and a + ¢ = b+ d) we can simplify the discriminant of a cell. For example, we
can plug @’ = 2(2b+ ¢) — a into (2b — ¢)? — aa’ and get a quantity involving only a, b

and ¢ (values in the right pinwheel).

A g: 23 =A % = a® + (2b)% + % — 2(2ab + ac + 2bc)

= b+ (2¢)% + d? — 2(2bc + bd + 2¢d)
=2+ (2d)%* + a® — 2(2cd + ca + 2da)
= d%+ (2a)* + b® — 2(2da + db + 2ab).

Note that by symmetry in swapping a,a’ and d,d" we could also express it
as a quantity involving only values in the left pinwheel. Moreover, adding the above
quantities we can get a quantity involving all the values around a vertex. Note that this

remains unchanged when we rotate or reflect the pinwheel. More precisely, we have

=A ga (4.1)

- %(cﬂ PB4 @4 d®) — 2at )b+ d) — (ac+ bd).
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Definition 70. If 0 = 3 then

As in the o = 2 case we can simplify the discriminant of a cell and obtain the

following.
a/

AL

6/
d/

a® + (3b)? + ¢* — 2(3ab + ac + 3bc)

= 0%+ (3¢)® + d? — 2(3bc + bd + 3cd)
=2+ (3d)? + €% — 2(3¢d + ce + 3de)
+ (3€)% + f2 — 2(3de + df + 3ef)
=24+ (3f)% +a® — 2(3ef + ea + 3fa)

24 (3a)® + b — 2(3fa+ fb+ 3ab).

By adding the above quantities we obtain an expression for the discriminant

of a cell which remains unchanged when we rotate or reflect a pinwheel contained in the

cell.




11 1
= g(a2+b2+c2+d2+82+ A —2(ab+bc+cd+detef+ fa) =3 (ac+cetea+bd+df+ fb).

Theorem 71. Let Q(x,y) = ax? + B/oxy + vy be a binary quadratic diform. The

discriminants of all cells in the topograph of Q are equal to A(Q) = o(B%0 — 4ary).

Proof. It is easy to check using the above formulas that the discriminant of the home
pinwheel equals A(Q). For instance, the discriminant at the home pinwheel in the case

o = 2 is given by

20 + 2 _ _
Al <aa++2ﬁﬂ++2z = 45" — 8oy = A(Q).

Then, by 4.1 and 4.2, the discriminants of all cells adjacent to the home pinwheel must
also be equal to A(Q). Since all the other cells are linked to the home pinwheel, the

discriminants of every cell must be equal to A(Q). O

4.2.3 Wells for definite diforms

The climbing principle says that when the values corresponding to an edge
in the topograph are positive, then the arrows maintain a flow of constant increase.
We show here that the topograph of a positive-definite BQD (whose values are always

positive) has a unique source for its flow.

Proposition 72. Let Q be a positive-definite BQD over R, with o =2 or o = 3. Then
the topograph of Q exhibits a unique well — either a single vertex or an edge (double-well)

from which all arrows emanate.

Proof. The set of values occurring in the topograph of ) is a set of positive integers, so
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it has a smallest element. Let b be that smallest integer. Note that there might be two
or more regions in the topograph of () where the same smallest value occurs.

Let ¢ be the smallest among the integers in a face opposite to b. The arithmetic
progression rules, in a series of cases, imply that all arrow point away from the edge
separating b and c. When the edge separating b and c is marked by a circle, the topograph

exhibits a double-well. Otherwise, the topograph exhibits a single-well. O

Remark 73. A double-well can be seen in Figure 4.2 above. A single-well can be seen in

Figure 4.3 below.

4.2.4 Interlacing Conway topographs

Every value on the topograph of a BQD @ appears on the topograph of Q,eq or
of Qpue. In this way, values from two of Conway’s topographs interlace in the topograph

of a binary quadratic diform.

Proposition 74. If z appears on the topograph of Qyeq, then (1) z appears on the
topograph of Q or (2) o | z and zo~1 appears on the topograph of both Qe and Q.
Similarly, if z appears on the topograph of Qpe, then (1) z appears on the topograph of

Q, or (2) o | z and zo~! appears on the topographs of both Qeq and Q.

Proof. Suppose z occurs on the topograph of Qreq. Thus Qreq(u, v) = 2z for some coprime
u,v € Z. If GCD(u,ov) = 1, then (u,vy/0) is a primitive divector, and Q(u,v\/0) =
Qred(u,v) = z appears in the topograph of Q.

If GCD(u,0v) # 1, then o | u and GCD(0 'u,v) = 1. We compute o'z =
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Figure 4.3: Topograph for the definite binary quadratic diform Q(z,y) = 2% ++v/2xy+3y>

over Z[v/2].
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01 Qred (1, ) = Qulue(0 u,v) = Q(o ™ uy/a,v). Hence 0~z appears on the topograph

of both Quue and Q. O

Corollary 75. Let fireq and ppge be the minimum nonzero absolute values of Qreq and

Qvlue- Then min{piyed, tblue ; i the minimum nonzero absolute value of Q.

Proof. Every value on the topograph of @ occurs in the topograph of Qreq or Qplue-
Hence the minimum nonzero absolute value pg of @ satisfies pg > min{jired, blue }-
Conversely, suppose without loss of generality that preq < piblue.- Then either peq occurs
in the topograph of @, or else peqo " occurs in the topograph of Quue. The latter

would contradict the assumption that pireq < pfiblue; thus pired = p@- O
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Chapter 5

Indefinite diforms

5.1 Indefinite forms and the river

If Q(z,y) = ax? + By/oxy + yy? is a diform of discriminant A(Q) then the

following identity holds:

daoQ(z,y) = (2av/oz + Boy)® — AQ)y*.

If A(Q) > 0 then @ represents both positive and negative integers, and it is called
indefinite diform. We call @ degenerate if A(Q) =0 or A(Q) is a square.

The faces of the topograph with value zero are called lakes. The set of segments
separating positive values from negative values is called a river. Throughout this chapter
we will explore the topographs of indefinite forms. We will show in this section that for

indefinite forms, topographs without lakes have endless rivers.

Lemma 76. Let Q be a BQD of discriminant A(Q). The topograph of Q contains a
lake if and only if A(Q) is a square.
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Proof. We compute the discriminant at a pinwheel containing a face with value zero

using the formulas we got in the previous chapter.

If o =2 then A(Q) = A % =a?+ 2002+ -22a-04+ac+2-0-¢)

=a?+c* —2ac = (a—c)>

If o = 3 then A(Q) = A 2 I |=a>+3-02+c—2Ba-0+ac+3-0-0)

d
=a?+c?—2ac=(a——c)
For the converse, assume A(Q) is a square. Then the binary quadratic forms
Qrea and Qprue have square discriminants, so their topographs contain lakes; see ref.

[11], Proposition 11.2. Hence the topograph of @} contains a lake.

Lemma 77. Rivers cannot branch.

Proof. If a river branched, the faces around the branch point would alternate signs as
they cross each river segment. Hence the rivers may only branch with even degree at a

vertex. The possibilities, up to symmetry, are displayed below.
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We use Corollary 68 to exclude each of them. When o = 2, the identity
a4+ ¢ = b+ d yields a contradiction if the signs of a and ¢ are equal, and opposite
to the signs of b and d. Similarly, when ¢ = 3, the identity a + ¢+ e = b+ d+ f
yields a contradiction if the signs of a, ¢, e are equal and opposite to the signs of b,d, f.
Branch-forms (I) and (II) are excluded.

When o = 3, then a+d = b+e = ¢+ f also holds. Thus we find a contradiction
if the signs of b, e are equal and opposite to the signs of ¢, f. This excludes form (III).
We also find a contradiction if the signs of a,d are equal, and opposite to the signs of

b, e. This excludes form (IV). Hence the river cannot branch. O

Proposition 78. If Q) is a nondegenerate indefinite diform, then its topograph contains

a single endless nonbranching river.

Proof. Since @ is an indefinite diform both positive and negative values occur in its
topograph. Since () is nondegenerate its discriminant is nonsquare and Lemma 76 implies
the topograph of @) does not contain a lake (i.e. zero does not occur).

As one travels from a positive face to a negative face, one must at some point
cross a river from positive to negative. This gives existence. The climbing principle
(propagation of growth-arrows) demonstrates that as one travels away from a river, one
cannot hit another river, giving uniqueness.

The river cannot terminate since there are no lakes, and so the river is endless.
The crux of the proposition is that rivers cannot branch. This is Lemma 77, proved

above. O
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Figure 5.1: Topograph for the indefinite diform Q(x,y) = 2% — 22 over Z[V/3].
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2b+c— 90 b>0 2b+c+ 06

c<O0

(a) o =2 (b) o =3
Figure 5.2: Cells containing a river segment.

The following result shows that going along the river, from segment to segment,

we must find a repetition. Once we find a repetition, the pattern repeats.
Proposition 79. Endless rivers are periodic.

Proof. We will show that the values adjacent to the river in a river-cell of discriminant
A are bounded by kA for some k € R. The river-cells are displayed in Figure 5.2 above.
Let 0 = 2,3 and let § be the step size of the arithmetic progressions as in Theorem 66.
Then A = (6b—¢)? — (b +c—d)(ob+c+6) = 62 — 4obe. Since b > 0 and ¢ < 0 we

have —4obe > 0 and thus 0 < 62 < A. Moreover,
A
0<b-|c] <—.
lef < 4o

Thus § < VA and b < %. Given A, the value of 6 and b determine the value of c.
Thus there are finitely many possible river-cells, so there must be a repetition. Hence

the river is periodic. O
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5.2 Riverbends shapes and estimates

By Proposition 49 every region of the topograph is incident with infinitely many
edges and the values around it form a bi-infinite sequence whose n'" term is given by

an = QW + n\/o¥) for n € Z; see Figure 5.3 below.

Figure 5.3: River around the edges of an infinity-gon.

Proposition 80. The sequence (an)nez of values around a face labelled b, as in Figure

5.8, is a quadratic sequence with acceleration 20b.

Proof. We need to check that the sequence of differences between any two consecutive
terms form an arithmetic progression of step size 20b. The Arithmetic Progression Rule

implies that the triples

(a_2,0b+ a_1,a0),(a—1,0b+ ap,a1) and (ag, b+ ay,az)

are arithmetic progressions.
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Then (cb+a—1) —a—2 = ap — (6b+a_1), (cb+ap) —a—1 = a1 — (6b+ ap),

and (ob+ a1) — ap = ag — (ob+ ay). This implies
(ap —a-1) — (a—1 — a—2) = 200,
(a1 —ao) — (ap — a-1) = 20b,
(a2 —aq) — (a1 — ap) = 20b.

Therefore (a2 — ai1), (a1 — ap), (ap — a—1),(a—1 — a—_2) is an arithmetic progression of
step size 20b. Hence ...,a_s,a_1,aq,a1,as9,... is a quadratic sequence with acceleration

20b. O

If the value b is positive, then the values across the river are negative. But
in this case, the values a_9,a_1,a9,a1,as form a quadratic progression with positive
acceleration 20b. Similarly, if the value b is negative, the values a_s,a_1, ag, a1, as form
a quadratic progression with negative acceleration 20b. Hence as one travels far enough,
to the left and to the right, we must see a sign switch for the values across from b. Since
the entire river cannot be adjacent to a single region, the river must “bend.”

As we have an endless nonbranching river, analysis of “riverbends” gives a

minimum value bound for diforms.

Theorem 81. Let () be a nondegenerate indefinite BQD, and let ug denote its minimum

nonzero absolute value.
o =2: If Q is not DLs(R,)-equivalent to a multiple of * — y?, then ug < \/A/10.

o =3: If Q is not DLs(R,)-equivalent to a multiple of x* — y?, then ug < \/2A/25.
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Proof. If one finds riverbends as in Figures 5.4 or 5.5, the local formulas for discriminant
give the stated minimum value bound or better. For example, the bound displayed in
Figure 5.4 is obtained by expanding the discriminant and writing it is a sum of ten

positive integers:
A= +b*+ b+ b —bc—bc—be —be+c* — ad.

Thus |b] - [b] < A/10, |b]-|c| < A/10, |c|-|c] < A/10 or |a|-|a’| < A/10. If the product of
two positive integers is bounded by A /10 then one of the two integers must be no greater
than y/A/10. Hence the minimum nonzero absolute value of @ satisfies ug < /A/10.

The bounds displayed in Figure 5.5 can be proved similarly.

A= (2b—c)? —ad

po < /A/10

(Either way)

L A=@b-—c)?—aa ¢ <0

""" o < /AJIT

a>0 4A = (4b—3c)2 — ad

1o < 2825

/
/

o / VA
// (Any of these four) /,// (Any of these three)

Figure 5.5: Riverbend types for o = 3.
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If no such riverbends of those shapes occur, then the river must maintain one

of the three shapes of Figure 5.6 throughout its entire length.

7 A AK

Figure 5.6: One more river shape for ¢ = 2 and two more shapes for o = 3.

The isometry group of such a homogeneous river includes a translation along the
river. Replacing @ by a DLs(R,)-equivalent form if necessary, we may place this river
through the segment separating +(1,0) and £(0, 1). Translation along the homogeneous

rivers is then given by the matrices

in the three pictured cases of Figure 5.6. Periodicity of the river implies that R®, S¢ or
T¢ is an isometry of () for some e > 0.
The eigenvectors of R and S are (1,1) and (1,—1). If X\ and p denote their

eigenvalues, then
Q(]-a 1) = >‘2€Q(17 1) and Q(]-a _1) = :U’2eQ(17 _1)

But a quick computation demonstrates that \,u € R and A\, pu ¢ {1,—1}. Hence

Q(1,1) = Q(1,—1) = 0 in the two straight-river cases. Writing the diform as Q(z,y) =
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az? + By/oxy + vy?, this implies
a+pVo+ry=a—BvVo+~v=0.

Hence a« = —v and 8 = 0. We have proven that an endless straight river occurs only if
Q is equivalent to a multiple of 22 — 32 (when ¢ = 2 or ¢ = 3).

It remains to study the third shape of homogeneous river, on which 71" acts by
translation. The eigenvectors of T are (1,v/2) and (—1,v/2), with eigenvalues v/3 + /2.
Hence, if T¢ is an isometry of @ for some e > 0, then Q(1,v/2) = Q(—1,v2) = 0. In
this case, o + V6 + 2y = a — BV6 4+ 2y = 0. Hence f = 0 and o = —2v. We have
proven that an endless homogeneous river of the third form occurs if and only if @ is
equivalent to a multiple of 222 — 42, The discriminant of the diform 2z —y? is 24, while
its minimum absolute value is pg = 1. The estimate pg < \/m can be directly

checked in this case, finishing the proof. O

Remark 82. The exceptional diforms z? — y? cannot be removed from the previous
theorem. The discriminant of the diform 2 — y? is 40 and its minimal value is pno = 1.

Thus when o = 2, the estimate pg < /A/10 is violated; when o = 3, the estimate
o < /2A/25 is violated.

Definition 83. The Markoff spectrum is the set of real numbers m = ,uQ/\/K corre-

sponding to all nondegenerate indefinite binary quadratic forms Q.

It has been long known that there is a gap in the Markoff spectrum between
1/4/12 and 1/4/13; see |3, §1, Proof of Theorem 3.3]. The following corollary follows
directly from the previous theorem (4/2/25 was replaced by 1/4/13) and Theorem 64.
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Corollary 84. Suppose that Q1 and Q3 are nondegenerate indefinite BQFs of discrim-

inant A, with o | A and [Q2] = [Aa] - [@1]. Then

o=2: If Q1 and Qs are not equivalent to a multiple of x> — 2y?, then
min{uq,, pg.} < vA/10.

o =3: If Q1 and Qo are not equivalent to a multiple of x*> — 3y?, then

min{uq,, p.} < VA/13.

Remark 85. The classical bound for a binary quadratic form @ is pg < /A/5.
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