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In the 1990s, J. H. Conway published a combinatorial-geometric
method for analyzing integer-valued binary quadratic forms
(BQFs). Using a visualization he named the “topograph,” Con-
way revisited the reduction of BQFs and the solution of quadratic
Diophantine equations such as Pell’s equation. It appears that
the crux of his method is the coincidence between the arith-
metic group PGL2(Z) and the Coxeter group of type (3, ∞). There
are many arithmetic Coxeter groups, and each may have unfore-
seen applications to arithmetic. We introduce Conway’s topo-
graph and generalizations to other arithmetic Coxeter groups.
This includes a study of “arithmetic flags” and variants of binary
quadratic forms.

arithmetic | Coxeter group | quadratic form | topograph

B inary quadratic forms (BQFs) are functions Q :Z2→Z
of the form Q(x , y) = ax2 + bxy + cy2, for some integers

a, b, c. The discriminant of such a form is the integer ∆ = b2−
4ac. In ref. 1, J. H. Conway visualized the values of a BQF
through an invention he called the topograph.

1. Conway’s Topograph
The Geometry of the Topograph. The topograph is an arrangement
of points, edges, and faces, as described below.

• Faces correspond to primitive lax vectors: coprime ordered
pairs ~v = (x , y)∈Z2, modulo the relation (x , y)∼ (−x ,−y).
Such a vector is written ±~v .

• Edges correspond to lax bases: unordered pairs {±~v ,±~w} of
primitive lax vectors which form a Z basis of Z2. (Clearly this is
independent of sign choices.)

• Points correspond to lax superbases: unordered triples {±~u,
±~v ,±~w}, any two of which form a lax basis.

Incidence among points, edges, and faces is defined by con-
tainment. A maximal arithmetic flag in this context refers to a
point contained in an edge contained in a face. The geome-
try is displayed in Fig. 1; the points and edges form a ternary
regular tree, and the faces are ∞-gons. The group PGL2(Z) =
GL2(Z)/{±1} acts simply–transitively on maximal arithmetic
flags.

On the other hand, the geometry of Fig. 1 also arises as the
geometry of flags in the Coxeter group of type (3,∞). This is

the Coxeter group with a diagram The group
W encoded by such a diagram is generated by elements S =
{s0, s1, s2} corresponding to the nodes, modulo the relations
s2
i = 1 (for i = 0, 1, 2), s0s2 = s2s0, and (s0s1)3 = 1. If T ⊂S is

a subset of nodes, write WT for the subgroup generated by T ; it
is called a parabolic subgroup. The flags of type T are the cosets
W /WT . The Coxeter group W acts simply–transitively on the
maximal flags; i.e., the cosets W /W∅=W .

The geometric coincidence reflects the fact that PGL2(Z) is
isomorphic to the Coxeter group W of type (3,∞), a classical
result known to Poincaré and Klein. But Conway’s study of lax
vectors, bases, and superbases goes further, giving an arithmetic
interpretation of the flags for the Coxeter group. This raises
the natural question: Given a coincidence between an arithmetic
group and a Coxeter group, is there an arithmetic interpretation
of the flags in the Coxeter group?

Binary Quadratic Forms. If one draws the values Q(±~v) on the
faces labeled by the primitive lax vectors ±~v , one obtains Con-
way’s topograph of Q . Figs. 2 and 3 display examples. If u, v , e, f
appear on the topograph of Q , in a local arrangement we call a
cell, then Conway observes that the integers e, u + v , f form an
arithmetic progression.

The discriminant of Q can be seen locally in the topograph, at
every cell, by the formula ∆ = u2 + v2 + e2− 2uv − 2ve − 2eu =
(u − v)2− ef .

A consequence of the arithmetic progression property is Con-
way’s climbing principle; if all values in a cell are positive, place
arrows along the edges in the directions of increasing arithmetic
progressions. Then every arrow propagates into two arrows; the
resulting flow along the edges can have a source, but never a
sink. This implies the existence and uniqueness of a well for
positive-definite forms: a triad or cell which is the source for
the flow. The well gives the unique Gauss-reduced form QGr

in the SL2(Z)-equivalence class of Q . More precisely, every
well contains a triple u ≤ v ≤w of positive integers satisfying
u + v ≥w , with strict inequality at triad wells and equality at
cell wells (Fig. 2). Depending on the orientation of u, v ,w at the
well, the Gauss-reduced form is given below; in the ambiguously
oriented case with u = v , QGr(x , y) = ux2 + (u + v −w)xy +
vy2. If u + v =w , both orientations occur in a cell well, and
QGr(x , y) = ux2 + vy2.

When Q is a nondegenerate indefinite form, Conway defines
the river of Q to be the set of edges which separate a positive
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value from a negative value in the topograph of Q . Since all
values on the topograph of Q must be positive or negative, the
river cannot branch or terminate. The climbing principle implies
uniqueness of the river. Thus, the river is a set of edges com-
posing a single endless line. Bounding the values adjacent to the
river implies periodicity of values adjacent to the river and thus
the infinitude of solutions to Pell’s equation. This is described in
detail in ref. 1.

Riverbends—cells with a river as drawn below—correspond to
Gauss’s reduced forms in the equivalence class of Q .

Proposition 1. Let u, v , e, f be the cell values at a riverbend,
with e < 0, f > 0. Then a Gauss-reduced form in the SL2(Z)-
equivalence class of Q is given by

QGr(x , y) = ux2 + (u + v − e)xy + vy2.

Proof: Let b = (u + v)− e = f − (u + v) be the common dif-
ference at the cell. Then QGr(x , y) = ux2 + bxy + vy2 is SL2(Z)
equivalent to Q and we must prove Gauss’s reduction conditions
(ref. 2, article 183):

0< b<
√

∆ and
√

∆− b< 2|u|<
√

∆ + b.

Note that 0< b since e < f . Since b2− 4uv = ∆, and u and v
have opposite sign, we find that b2 <∆. Gauss’s first reduction
condition 0< b<

√
∆ follows.

Since (u − v)2− ef = ∆, and e and f have opposite sign,
we find that ∆> (u − v)2. Since u and v have opposite
sign, this implies

√
∆> sgn(u)(u − v). Multiplying by 4|u|

yields 4|u|
√

∆> 4u(u − v). Replace −4uv by ∆− b2 to obtain
4|u|
√

∆> 4u2 + ∆− b2. Rearranging yields

Fig. 1. Conway’s geometry of primitive lax vectors, lax bases, and lax
superbases.

Fig. 2. The topograph of Q(x, y) = x2 + 2y2, with arrows exhibiting the
climbing principle. The well (source of the flow) is the cell at the center.

4u2− 4|u|
√

∆ + ∆< b2.

Hence (2|u| −
√

∆)2 < b2, and so −b< 2|u| −
√

∆< b. This
verifies Gauss’s second reduction condition.

The existence of riverbends gives a classical bound, by an
argument we learned from Gordan Savin.

Theorem 2. The minimum nonzero absolute value µQ of a
nondegenerate indefinite BQF Q satisfies µQ ≤

√
∆/5.

Proof: At a riverbend, one finds ∆ = (u − v)2− ef = u2 +
v2− uv − vu − ef , the sum of five positive integers. It follows
that one of u2, v2,−uv ,−vu,−ef must be bounded by ∆/5.
Among |u|, |v |, |e|, |f |, one must be bounded by

√
∆/5.

These are some highlights and applications of Conway’s
topograph. In the next sections, we describe generalizations.

2. Gaussian and Eisenstein Analogues
Let G denote the Gaussian integers: G=Z[i ]. Let E denote the
Eisenstein integers: E=Z[e2πi/3].

Arithmetic Flags and Honeycombs. One may generalize Conway’s
vectors, bases, and superbases to arithmetic structures in G2 and
E2. Guiding this are embeddings of PSL2(G) and PSL2(E) into
hyperbolic Coxeter groups. In ref. 3, sections 1.I, 1.II, 3, and 6,
Bianchi describes generators for SL2(G) and SL2(E) and funda-
mental polyhedra for their action on hyperbolic 3-space. Using
reflections in the faces of these polyhedra, one may write explicit
presentations of these groups; Fricke and Klein carry this out
for SL2(G) in ref. 4, section I.8, where one finds a connection
to the (later-named) Coxeter group of type (3, 4, 4). Schulte and
Weiss give a detailed treatment, proving the following in ref. 5,
theorems 7.1 and 9.1.

Theorem 3. PSL2(G) is isomorphic to an index-two subgroup of
(3, 4, 4)+. PSL2(E) is isomorphic to an index-two subgroup of
(3, 3, 6)+.

Here (a, b, c)+ denotes the even subgroup of the Coxeter
group of type (a, b, c). As the Coxeter groups of types (3, 4, 4)
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Fig. 3. The topograph of Q(x, y) = x2− 3y2, exhibiting a periodic river.
Solutions to Pell’s equation x2− 3y2 = 1 are found along the riverbank.

and (3, 3, 6) are commensurable to PSL2(G) and PSL2(E),
respectively, we expect an arithmetic interpretation of the
Coxeter geometries. Such an arithmetic incidence geometry is
described below.

• Cells correspond to primitive lax vectors: coprime ordered
pairs ~v = (x , y)∈G2 (respectively E2), modulo the relation
(x , y)∼ (εx , εy) for all ε∈G× (resp., ε∈E×).

• Faces correspond to lax bases: unordered pairs {ε~v , ε~w} of
primitive lax vectors which form a G basis of G2 (respectively
E basis of E2).

• Edges correspond to lax superbases: unordered triples {ε~u, ε~v ,
ε~w}, any two of which form a lax basis.

• Points of the Eisenstein topograph∗ correspond to lax tetra-
bases: unordered quadruples {ε~s, ε~t , ε~u, ε~v}, any three of
which form a lax superbasis.

• Points of the Gaussian topograph correspond to lax cubases:
sets of three two-element sets {{ε~u1, ε~u2}, {ε~v1, ε~v2}, {ε~w1,
ε~w2}}, such that all eight choices of i , j , k ∈{1, 2} give a lax
superbasis {ε~ui , ε~vj , ε~wk}.

Incidence is given by the obvious containments described
above. We call this incidence geometry the topograph for E or
G, and it is equipped with an action of PSL2(E) and PSL2(G),
respectively. The terms tetrabasis and cubasis reflect the residual
geometry around a point (Fig. 4). Both geometries produce reg-
ular hyperbolic honeycombs (ref. 6, chap. IV); the points, edges,
and faces around each cell form square or hexagonal planar
tilings in the Gaussian or the Eisenstein case, respectively.

The Gaussian and Eisenstein topographs are described by
Bestvina and Savin in ref. 7, sections 7 and 8. Both topographs,
and the following link to Coxeter geometries, are given in the
PhD thesis of the second author (8).

*The Eisenstein topograph was first described in 2007, in the unpublished master’s thesis
of Andreas Weinert.

Theorem 4. The topographs for E2 and G2 are equivariantly iso-
morphic to the Coxeter geometries of types (3,3,6) and (3,4,4),
respectively.

By equivariance, we mean that the isomorphism intertwines
the natural actions of PSL2(E) and PSL2(G) on one hand with
the actions of the Coxeter groups on the other, via the inclusion
described in Theorem 3.

Binary Hermitian Forms. An integer-valued binary Hermitian form
(BHF), over E or G, is a function H :E2→Z or G2→Z, of the
form

H (x , y) = ax x̄ +βx̄ y + β̄x ȳ + cyȳ .

Here we assume a, c ∈Z, and β ∈ (1−ω)−1E or β ∈ (1 + i)−1G
(the inverse different of E or G, respectively). The discriminant
of H is the integer defined by

∆ = (3 or 4) · (ββ̄− ac), for E or G, respectively.

Fricke and Klein discuss reduction theory of Hermitian forms
over G, using the geometry of SL2(G), in ref. 4, section III.1,1–8.
The topographs give a new approach, pursued by Bestvina and
Savin (7).

Let H be a BHF over E or G. Recalling that cells of
the topographs correspond to primitive lax vectors, we define
the topograph of H to be the result of placing the value
H (ε~v) at the topograph cell marked by the primitive lax vec-
tor ε~v . The most interesting case occurs when H is nonde-
generate indefinite (taking positive and negative values, but
never zero on a nonzero vector input). In this case, Con-
way’s river is replaced by the ocean—the set of faces sepa-
rating a cell with positive value from one with negative value.
Bestvina and Savin prove (ref. 7, theorems 5.3 and 6.1) that this
ocean is topologically an open disk, locally CAT(0) as a met-
ric space, and the unitary group U (H ) acts cocompactly on the
ocean.

Reduced indefinite BQFs correspond to riverbends in Con-
way’s topograph. In a similar way, one finds reduced indefinite
BHFs at the points of the ocean of negative curvature, i.e., where
more than four ocean squares (for G) or more than three ocean
hexagons (for E) meet at a point. From this, Bestvina and Savin
(ref. 7, theorem 8.7) recover the optimal bound on the minima
of nondegenerate indefinite BHFs over E. The bound for G can
be obtained by the same method.

Theorem 5. Let H be a nondegenerate indefinite BHF. Then the
minimum nonzero absolute value µH satisfies µH ≤

√
∆/6.

Proof: The Eisenstein case is proved in ref. 7, so we prove the
Gaussian case. Consider a vertex at which the ocean of H has
negative curvature; such a point exists by ref. 7, corollary 6.2. The
residue of the topograph at this vertex is a cube, whose faces are
labeled by the values of H . The intersection of the ocean with

Fig. 4. The geometry of the Gaussian and Eisenstein topographs, displaying
square and hexagonal faces and cubic and tetrahedral residues at a point.
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this cube forms a simple closed path on the edges, separating
positive-valued faces from negative ones.

Form I corresponds to a Euclidean vertex; forms II, III, and
IV correspond to ocean vertices of negative curvature. Label the
values of H on the cube by a, b, c, u, v ,w , with a opposite u , b
opposite v , and c opposite w . In ref. 7, proposition 7.1, Bestvina
and Savin demonstrate that a + u = b + v = c +w . This excludes
form IV, since the sum of two positive numbers cannot equal
the sum of two negative numbers. Ref. 7, section 7 also gives a
formula for the discriminant,

∆ = z 2− 2au − 2bv − 2cw , where z = a + u = b + v = c +w .

In forms II and III, we may place a, u, b, v so that a and u have
opposite signs, and b and v have opposite signs. Expressing z as
c +w yields

∆ = c2 +w2− 2au − 2bv .

As the right side is a sum of positive terms, we find

min{|a|, |b|, |c|, |u|, |v |, |w |}≤
√

∆/6.

3. Real Quadratic Arithmetic
Dilinear Algebra. Here we introduce a family of “dilinear groups”
associated to certain real quadratic rings. Let σ> 1 be a square-
free positive integer, and let Rσ =Z[

√
σ] be the quadratic ring

of discriminant 4σ. We define the dilinear group DL2(Rσ) to be

the group of all matrices
(
a b
c d

)
∈GL2(Rσ) such that

(a, d ∈Z ·
√
σ and b, c ∈Z) or (a, d ∈Z and b, c ∈Z ·

√
σ).

Let DL+
2 (Rσ) denote its subgroup consisting of matrices with

a, d ∈Z and b, c ∈Z ·
√
σ. While the dilinear groups seem a bit

mysterious at first, DL+
2 (Rσ) is GL2(Q(

√
σ)) conjugate to a

congruence subgroup of GL2(Z): If g = diag(1,
√
σ), then

gDL+
2 (Rσ)g−1 = Γ0(σ) :=

{(
α β
γ δ

)
∈GL2(Z) : γ ∈σZ

}
.

We thank the referee for this insight.
A divector over Rσ will mean a vector in R2

σ of red or blue type.
Red divectors are those of the form (u, v

√
σ) for some u, v ∈Z.

Blue divectors are those of the form (u
√
σ, v) for some u, v ∈Z.

A red divector (u, v
√
σ) is called primitive if GCD(u,σv) = 1. A

blue divector (u
√
σ, v) is called primitive if GCD(uσ, v) = 1.

Theorem 6. The dilinear group DL2(Rσ) acts transitively on the set
of primitive divectors, and DL+

2 (Rσ) acts transitively on the set of
primitive red (or blue) divectors.

Proof: A matrix in DL2(Rσ) has a determinant in Z∩
Z[
√
σ]×= {±1}. It follows that a matrix in DL2(Rσ) sends prim-

itive divectors to primitive divectors. For transitivity, consider
a primitive red divector (u, v

√
σ). Since GCD(u,σv) = 1, there

exist s, t ∈Z such that su − tvσ= 1. Observe that(
u t

√
σ

v
√
σ s

)
·
(

1

0

)
=

(
u

v
√
σ

)
.

Fig. 5. The Coxeter geometries of type (4,∞) and (6,∞) are labeled by
primitive lax divectors for Z[

√
2] and Z[

√
3], respectively. Around each point

is a pinwheel.

Hence DL+
2 (Rσ) acts transitively on the set of primitive red vec-

tors. Since the matrix
(

0 1
−1 0

)
∈DL2(Rσ) swaps primitive red

and blue divectors, the result follows.
Define PDL2(Rσ) =DL2(Rσ)/{±1}. When σ= 2 or σ= 3,

Johnson and Weiss (ref. 9, section 4) present PDL2(Rσ) by
generators and relations, proving the following.

Theorem 7. If σ= 2 or σ= 3, then PDL2(Rσ) is isomorphic to the
Coxeter group of type (2σ,∞).

Explicitly, Johnson and Weiss (8) note that PDL2(Rσ) is
generated by the triple of matrices (modulo ±1),

s1 =

(
0 1
1 0

)
, s2 =

(
−1 0√
σ 1

)
, s3 =

(
−1 0
0 1

)
,

which satisfy the Coxeter relations s2
1 = s2

2 = s2
3 =±1, (s1s2)2σ =

±1, (s1s3)2 =±1. From their result, we were led to “dilinear”
arithmetic interpretations of the geometries of types (4,∞) and
(6,∞).

Arithmetic Flags. The “dilinear” variant of Conways’s topograph
is as follows. Assume σ= 2 or σ= 3.

• Faces correspond to primitive lax divectors over Rσ , i.e.,
primitive divectors modulo ±1.

• Edges correspond to lax dibases: unordered pairs of lax divec-
tors generating R2

σ as an Rσ module. This implies that the
divectors are primitive, have opposite color, and form the rows
of a matrix in DL2(Rσ).

• Points correspond to lax pinwheels: cyclically ordered 2σ-
tuples of lax divectors such that any adjacent pair forms a lax
dibasis (and hence has opposite color).

Theorem 8. The geometry of primitive lax divectors, lax dibases,
and pinwheels for Rσ is equivariantly isomorphic to the Coxeter
geometry of type (2σ,∞) (Fig. 5).

Binary Quadratic Diforms. Let us return to the general case of a
square-free positive integer σ again. A binary quadratic diform
(BQD) is a function of the form

Q(x , y) = ax2 + b
√
σxy + cy2, where a, b, c ∈Z.

We restrict (x , y) to be a divector in R2
σ , so the values of Q are

integers. We define the discriminant of Q by ∆ =σ(b2σ− 4ac).
Restricting Q to red and blue divectors yields a pair

Qred,Qblue of BQFs over Z of discriminant ∆; explicitly,

Qred(u, v) :=Q(u, v
√
σ) = au2 + bσuv + cσv2,

Qblue(u, v) :=Q(u
√
σ, v) = aσu2 + bσuv + cv2.

Milea et al. PNAS | January 8, 2019 | vol. 116 | no. 2 | 445
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This pair of BQFs can be related through an accessory form we
call A∆. Namely, whenever σ |∆, define

A∆(u, v) =

{
σu2− ∆

4σ
v2 if ∆σ−1≡ 0 mod 4;

σu2 +σuv − ∆−σ2

4σ
v2 if ∆σ−1 6≡ 0 mod 4.

Write Cl(∆) for the group of SL2(Z)-equivalence classes of
primitive BQFs of discriminant ∆, following Bhargava (ref. 10,
theorem 1). If Q is a BQF of discriminant ∆, write [Q ] for its
SL2(Z)-equivalence class. Since A∆ is an ambiguous form (its
first coefficient divides its middle coefficient), its class in Cl(∆)
satisfies [A∆]2 = 1. The class of A∆ has another characterization
below.

Lemma 9. If Q is a BQF of discriminant ∆ that represents σ, and
σ |∆, then [Q ] = [A∆].

Proof: The square-freeness of σ is used repeatedly in what
follows. If Q represents σ, then Q is SL2(Z) equivalent to a
BQF of the form σu2 + buv + cv2. Since σ |∆ = b2− 4σc, we
find that σ | b. It follows that σu2 + buv + cv2 is ambiguous and
equivalent to σu2 + εuv + kv2 for some k ∈Z and ε∈{0, 1}.

If ε= 0, then ∆ =−4σk and ∆σ−1≡ 0 mod 4. In this case
k =−∆/4σ. If ε= 1, then ∆ =σ2− 4σk and ∆σ−1≡σ− 4k 6≡ 0
mod 4. In this case k =−(∆−σ2)/(4σ).

Thus, with σ fixed and σ |∆, we find that [A∆] is the unique
class in Cl(∆) which represents σ; it happens to be a 2-torsion
element in the class group. The following relates Qred and Qblue

via A∆.

Theorem 10. Suppose that a , bσ, and c are pairwise coprime.
In Cl(∆), one has [Qred] = [A∆] · [Qblue]. Conversely, if Q1,Q2

are primitive BQFs of discriminant ∆, and σ |∆, and [Q1] =
[A∆] · [Q2], there exists a BQD Q such that [Qred] = [Q1] and
[Qblue] = [Q2].

Proof: Consider the cube of integers below.

Let (Mi ,Ni) be the partition of this cube into a pair of two-by-
two matrices, in a front–back, left–right, and top–bottom fashion
according to whether i = 1, 2, 3, respectively, as in ref. 10, section
2.1. From these matrices, Bhargava constructs a triple of binary
quadratic forms Qi(u, v) =− det(Miu −Niv):

Q1(u, v) = au2 + bσuv + cσv2;

Q2(u, v) = cu2 + bσuv + aσv2;

Q3(u, v) =σu2 + bσuv + acv2.

By ref. 9, theorem 1, we have [Q1] · [Q2] · [Q3] = 1 in Cl(∆).
Observe that Q1 is precisely Qred. Next, observe that Q2 is
related to Qblue by switching u and v ; it follows that [Q2] =
[Qblue]−1. By Lemma 9, [Q3] = [A∆]. Since [A∆]2 = 1, we have

[Qred] = [A∆] · [Qblue] and [Qblue] = [A∆] · [Qred].

For the converse, suppose that Q1 and Q2 are primitive BQFs of
discriminant ∆, σ |∆, and [Q2] = [A∆] · [Q1]. Write Q1(u, v) =
αu2 +βuv + γv2, so σ |β2− 4αγ. If σ | γ, then σ |β, and Q1 =
Qred for the diform

Q(x , y) =αx2 +βσ−1√σxy + γσ−1y2.

If σ does not divide γ, then there exists an integer v satisfy-
ing the congruence α+βv + γv2≡ 0 mod σ. One may check this
by working one prime divisor of σ at a time; the quadratic for-
mula applies for odd prime divisors. Modulo two, 2 |σ |β2− 4αγ
implies that β is even and the congruence has a solution.

Hence Q1(1, v)≡ 0 mod σ. Since Q1 represents a multiple of
σ, Q1 is equivalent to a form au2 +β′uv + cσv2. The fact that σ
divides the discriminant implies β′= bσ for some b ∈Z.

Thus, whether σ divides γ or not, [Q1] = [Qred] for some
diform Q . Since [Q2] = [A∆] · [Q1], and [Qblue] = [A∆] · [Qred],
we find that [Q2] = [Qblue].

Let SDL+
2 (Rσ) be the subgroup of DL+

2 (Rσ) consisting of
matrices of determinant one. We say that two diforms Q ,Q ′ are
SDL+

2 (Rσ) equivalent if there exists η ∈SDL+
2 (Rσ) satisfying

Q ′(~v) =Q(η ·~v) for all divectors ~v . We write [Q ]σ = [Q ′]σ when
the diforms Q and Q ′ are SDL+

2 (Rσ) equivalent. One may check
directly that [Q ]σ = [Q ′]σ implies [Qred] = [Q ′red] and [Qblue] =
[Q ′blue]. From this, we may reframe Theorem 10 in terms of
equivalence classes.

Corollary 11. Assume σ |∆. The map Q 7→ (Qred,Qblue) yields a
surjective function from

• the set of SDL+
2 (Rσ)-equivalence classes of binary quadratic

diforms of discriminant ∆ to. . .
• the set of ordered pairs ([Q1], [Q2]) in Cl(∆) satisfying [Q1] =

[A∆] · [Q2].

It seems interesting to determine the fibers of this map. As we
will see, for σ= 2 and σ= 3, the question is how two of Con-
way’s topographs can be interlaced in a single topograph of a
diform.

Dilinear Topographs. Here we return to the assumption that σ= 2
or σ= 3. The topograph of a binary quadratic diform Q is
obtained by replacing each primitive lax divector by the corre-
sponding value of Q . Every value on the topograph of Q thus
appears on the topograph of Qred or of Qblue. In this way,
values from two of Conway’s topographs interlace in the topo-
graph of a binary quadratic diform. More precisely, we have the
following.

Proposition 12. If z appears on the topograph of Qred, then (i)
z appears on the topograph of Q or (ii) σ | z and zσ−1 appears
on the topograph of both Qblue and Q . Similarly, if z appears on
the topograph of Qblue, then (i) z appears on the topograph of
Q or (ii) σ | z and zσ−1 appears on the topographs of both Qred

and Q .
Proof: Suppose z occurs on the topograph of Qred. Thus,

Qred(u, v) = z for some coprime u, v ∈Z. If GCD(u,σv) =
1, then (u, v

√
σ) is a primitive divector, and Q(u, v

√
σ) =

Qred(u, v) = z appears on the topograph of Q .

Fig. 6. Cells in the range topograph for σ= 2 (Left) and σ= 3 (Right).

446 | www.pnas.org/cgi/doi/10.1073/pnas.1809537115 Milea et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 6
3.

24
9.

75
.2

48
 o

n 
Ju

ne
 2

7,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

63
.2

49
.7

5.
24

8.

https://www.pnas.org/cgi/doi/10.1073/pnas.1809537115


M
A

TH
EM

A
TI

CS

Fig. 7. Topographs for the definite binary quadratic diform Q(x, y) = x2 +√
2xy + 3y2 over Z[

√
2] and the indefinite diform Q(x, y) = x2− 2y2 over

Z[
√

3].

If GCD(u,σv) 6= 1, then σ | u and GCD(σ−1u, v) =
1. We compute σ−1z =σ−1Qred(u, v) =Qblue(σ−1u, v) =
Q(σ−1u

√
σ, v). Hence σ−1z appears on the topograph of both

Qblue and Q .

Corollary 13. Let µred and µblue be the minimum nonzero absolute
values of Qred and Qblue. Then min{µred,µblue} is the minimum
nonzero absolute value of Q .

The discriminant of a binary quadratic diform is locally visible
in its topograph, according to the formulas below:

∆ =

{
(2u − v)2− ef if σ= 2;

(3u − v)2− ef = (4u−3v)2−mn
4

if σ= 3.
[1]

Polarization for the quadratic form Q implies the following.

Theorem 14. At every cell in the topograph of Q , as in Fig. 6, one
finds arithmetic progressions as below.

σ= 2: The triples (e, 2u + v , f ) and (e ′, u + 2v , f ′) are arithmetic
progressions of the same step size.
σ= 3: The triples (e, 3u + v , f ) and (e ′, u + 3v , f ′) are arithmetic
progressions of the same step size δ and the triples (m, 4u + 3v ,n)
and (m ′, 3u + 4v ,n ′) are arithmetic progressions of the same step
size 2δ.

Proof: In both cases σ= 2, 3, the integers e, u, v , f of a cell in
Fig. 6 arise as values of Q of the form

e =Q(
√
σ~v − ~w), u =Q(~v), v =Q(~w), f =Q(

√
σ~v + ~w).

By the polarization identity for quadratic forms, the sequence

Q(
√
σ~v − ~w), Q(

√
σ~v) +Q(~w), Q(

√
σ~v + ~w)

is an arithmetic progression with step size δ :=BQ(
√
σ~v , ~w).

Here BQ is the bilinear form associated to the quadratic form
Q . Similarly, the integers e ′, f ′ arise as values of Q :

e ′=Q(~v −
√
σ~w), f ′=Q(~v +

√
σ~w).

The sequence

Q(~v −
√
σ~w), Q(~v) +Q(

√
σ~w), Q(~v +

√
σ~w)

is an arithmetic progression with step size δ′ :=BQ(~v ,
√
σ~w).

Note that δ= δ′, Q(
√
σ~v) =σu , and Q(

√
σ~w) =σv . Hence

(e,σu + v , f ) and (e ′, u +σv , f ′) are arithmetic progressions of
the same step size.

When σ= 3, the values m,n arise as values of Q : m =
Q(2~v −

√
3~w) and n =Q(2~v +

√
3~w). The polarization identity,

applied again, shows that (m, 4u + 3v ,n) and (m ′, 3u + 4v ,n ′)
are arithmetic progressions of the same step size 2δ.

Similar computations give linear relations among the values
around any vertex in the topograph.

Proposition 15. (Refer to the vertex diagrams above.) When σ= 2,
a + c = b + d . When σ= 3, a + d = b + e = c + f and also a +
c + e = b + d + f .

We draw an arrow on each edge to represent the direction of
increasing progressions or a circle if all progressions are constant.
Fig. 7 displays some examples. The climbing principle is the same
as Conway’s: Arrows always propagate when one looks at a cell
of positive values. By the same argument as that of Conway, one
obtains unique wells—a reduction theory for positive-definite
diforms.

Proposition 16. Let Q be a positive-definite BQD over Rσ , with
σ= 2 or σ= 3. Then the topograph of Q exhibits a unique well—
either a single vertex or an edge (double well) from which all arrows
emanate.

The river of a BQD is the set of segments separating positive
values from negative ones in its topograph. The most interesting
forms, just as for BQFs, are the nondegenerate indefinite forms.

Proposition 17. If Q is a nondegenerate indefinite diform, then its
topograph contains a single endless nonbranching river.

Proof: The existence and uniqueness of a river follows from
the same argument as for Conway’s case. Namely, as one travels
from a positive face to a negative face, one must at some point
cross a river from positive to negative. This gives existence. The
climbing principle (propagation of growth arrows) demonstrates
that as one travels away from a river, one cannot hit another
river, giving uniqueness. The crux of Proposition 17 is that rivers
cannot branch.

For if a river branched, the faces around the branch point
would alternate signs as they cross each river segment. Hence
the rivers may branch only with even degree at a vertex. The
possibilities, up to symmetry, are displayed below.

We apply Proposition 15 repeatedly. When σ= 2, the iden-
tity a + c = b + d yields a contradiction if the signs of a and c
are equal and opposite to the signs of b and d . Similarly, when
σ= 3, the identity a + c + e = b + d + f yields a contradiction if

Fig. 8. Riverbend types for σ= 2.
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Fig. 9. Riverbend types for σ= 3.

the signs of a, c, e are equal and opposite to the signs of b, d , f .
Branch-forms I and II are excluded.

It also happens that, when σ= 3, then a + d = b + e = c + f .
Thus, we find a contradiction if the signs of a, d are equal and
opposite to the signs of c, f . This excludes form III. We also
find a contradiction if the signs of b, e are equal and opposite to
the signs of a, d . This excludes form IV. Hence the river cannot
branch.

As we have an endless nonbranching river, analysis of
riverbends gives a minimum-value bound for diforms.

Theorem 18. Let Q be a nondegenerate indefinite BQD, and let µQ

denote its minimum nonzero absolute value.

σ= 2: If Q is not DL2(Rσ) equivalent to a multiple of x2− y2,
then µQ ≤

√
∆/10.

σ= 3: If Q is not DL2(Rσ) equivalent to a multiple of x2− y2,
then µQ ≤

√
2∆/25.

Proof: The entire river cannot be adjacent to a single region,
because its values opposite such a region would form a biinfinite
quadratic sequence with positive sign and negative acceleration
or negative sign and positive acceleration. Hence the river must
“bend.” If one finds riverbends as in Figs. 8 and 9, Eq. 1 gives
the stated minimum value bound or better (as derived in Figs. 8
and 9). If no such riverbends of those shapes occur, then the river
must maintain one of the three shapes of Fig. 10 throughout its
entire length.

The isometry group of such a homogeneous river includes
a translation along the river. Replacing Q by a DL2(Rσ)-
equivalent form if necessary, we may place this river through the
segment separating ±(1, 0) and ±(0, 1). Translation along the
homogeneous rivers is then given by the matrices

R =

(√
2 1

1
√

2

)
,S =

(
2
√

3√
3 2

)
,T =

(√
3 2

1
√

3

)
in the three cases shown in Fig. 10. Periodicity of the river implies
that Re , S e , or T e is an isometry of Q for some e > 0.

The eigenvectors of R and S are (1, 1) and (1, −1). If λ and µ
denote their eigenvalues, then

Q(1, 1) =λ2eQ(1, 1) and Q(1,−1) =µ2eQ(1,−1).

Fig. 10. One more river shape for σ= 2 and two more shapes for σ= 3.

But a quick computation demonstrates that λ,µ∈R and λ,µ 6∈
{1,−1}. Hence Q(1, 1) =Q(1,−1) = 0 in the two straight-river
cases. Writing the diform as Q(x , y) = ax2 + b

√
σxy + cy2, this

implies a + b
√
σ+ c = a − b

√
σ+ c = 0. Hence a =−c and b =

0. We have proved that an endless straight river occurs only if Q
is equivalent to a multiple of x2− y2 (when σ= 2 or σ= 3).

It remains to study the third shape of the homogeneous
river, on which T acts by translation. The eigenvectors of T

are (
√

2,±1), with eigenvalues
√

3±
√

2, respectively. Hence,
if T e is an isometry of Q for some e > 0, then Q(

√
2, 1) =

Q(
√

2,−1) = 0. In this case, 2a + b
√

6 + c = 2a − b
√

6 + c = 0.
Hence b = 0 and c =−2a . We have proved that an endless
homogeneous river of the third form occurs if and only if Q is
equivalent to a multiple of x2− 2y2 (displayed in Fig. 7). The
discriminant of the diform x2− 2y2 is 24, while its minimum
absolute value is µQ = 1. The estimate µQ ≤

√
2∆/25 can be

directly checked in this case, finishing the proof.
The discriminant of the diform x2− y2 is 4σ and its minimal

value is µQ = 1. Thus, when σ= 2, the estimate µQ ≤
√

∆/10

is violated; when σ= 3, the estimate µQ ≤
√

2∆/25 is violated.
Hence the exceptional diforms x2− y2 cannot be removed from
Theorem 18.

Corollary 19. Suppose that Q1 and Q2 are nondegenerate indefinite
BQFs of discriminant ∆, with σ |∆ and [Q2] = [A∆] · [Q1]. Then

σ= 2: If Q1 and Q2 are not equivalent to a multiple of x2− 2y2,
then min{µQ1 ,µQ2}≤

√
∆/10.

σ= 3: If Q1 and Q2 are not equivalent to a multiple of x2− 3y2,
then min{µQ1 ,µQ2}≤

√
∆/13.

Proof: This follows directly from Theorems 18 and 10, except
that 2/25 has been replaced by 1/13. This replacement is possi-
ble, due to a gap in the Markoff spectrum between

√
12 and

√
13;

see ref. 11, section 1, proof of theorem 3.3.

4. Conclusion
In each of the discussed examples, there is a coincidence between
a Coxeter group and an arithmetic group. For Conway’s topo-
graph, it is the coincidence between the Coxeter group of type
(3,∞) and the arithmetic group PGL2(Z). The dilinear groups,
of Coxeter types (2σ,∞) for σ= 2, 3, are arithmetic subgroups
of PGU

Q(
√
σ)/Q

1,1 (Q), the projective unitary similitude group for a
Hermitian form relative to Q(

√
σ)/Q.

Table 1. Commensurability classes of simplicial hyperbolic
arithmetic Coxeter groups of dimension at least 3 (extracted
from ref. 19)

Dimension Coxeter types

3 (3, 3, 6) and (3, 4, 4)
4 (3, 3, 3, 5) and (3, 3, 3, 4) and (3, 4, 3, 4)
5 (3, 3, 3, 4, 3) and (3, 3[5])
6 (4, 32, 32,1) and (3, 3[6])
7 (32,2,2) and (4, 33, 32,1) and (3, 3[7])
8 (34,3,1)
9 (36,2,1)
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When such a coincidence occurs, the Coxeter group is
arithmetic, and the following two questions are natural.

i) Is there an arithmetic interpretation for the flags in the
Coxeter group?

ii) Does the Coxeter geometry give a new reduction theory for a
class of quadratic (or Hermitian) forms?

The first question is reminiscent of the classical theory of
flag varieties. When G is a simple simply connected linear alge-
braic group over a field k , one can often identify a “standard”
representation of G on a k -vector space V . Every k -parabolic
subgroup of G is the stabilizer of some sort of k flag in V . If G
is a symplectic or spin or unitary group, these are the isotropic
flags in the standard representation. In type G2, these are the
nil flags in the split octonions. In an 11-part series of papers
(Beziehungen der E7 und E8 zur Oktavenebene I–XI, published
1954–1963, refs. 12–16), Freudenthal studied the “metasym-
plectic” geometry which describes flags in representations of
exceptional groups.

Now it appears that arithmetic Coxeter groups provide a paral-
lel industry, examining their representations on various modules
over Euclidean domains. Arithmetic flags are generalized bases
of these modules. The geometry of arithmetic flag varieties
seems (so far) to be the combinatorial geometry of Coxeter
groups. We do not yet see algebraic geometry in the picture, as
one finds in flag varieties G/P.

The applications to arithmetic (the arithmetic of arith-
metic Coxeter groups) include Conway’s approach to binary
quadratic forms and new generalizations. The reduction theory
for quadratic and Hermitian forms is a classical subject, some-
times tedious in its algebra—the Coxeter geometry and Conway’s
theory of wells and rivers give an intuitive approach. Beyond
reframing old results, it seems unlikely that one would find the
reduction theory of our “diforms” (or suitable pairs of binary
quadratic forms) without considering the Coxeter group. In this
way, arithmetic Coxeter groups offer applications to number
theory.

This paper has discussed five arithmetic Coxeter groups, of
types (3,∞), (3, 3, 6), (3, 4, 4), (4,∞), and (6,∞). If this is a
game of coincidences, when might it end? In ref. 17, Belolipetsky
surveys the arithmetic hyperbolic Coxeter groups; following his
treatment, we review the classification of such Coxeter groups.

The groups we have studied are simplicial hyperbolic arith-
metic Coxeter groups. In ref. 18, Vinberg proves there are 64
such groups in dimension at least 3. These fall into 14 com-
mensurability classes by ref. 19, as shown in Table 1. It would
not be surprising if each one offered a notion of arithmetic
flags (e.g., superbases, etc.) and quadratic/Hermitian forms. For
example, the Coxeter group of type (3, 3, 3, 4, 3) is arithmetic,
commensurable with PGL2(A) where A is the Hurwitz order
in the quaternion algebra Q+Qi +Qj +Qk . Arithmetic flags
in this case can be interpreted as lax vectors, bases, superbases,
3-simplex bases, 4-simplex bases, and 5-orthoplex bases, in the
A-module A2.

Table 1 displays only groups of dimension at least 3. In dimen-
sion 2, we find Conway’s topograph and its dilinear variants.
One might also consider arithmetic hyperbolic triangle groups,
classified by Takeuchi in refs. 20 and 21. Up to commensura-
bility, there are 19 of these, each associated to a quaternion
algebra over a totally real field. Vertices, edges, and triangles in
the resulting hyperbolic tilings surely correspond to arithmetic
objects—What are they?

If one wishes to depart from the simplicial groups, there
are nonsimplicial arithmetic hyperbolic Coxeter groups. In the
results of Vinberg (22), all examples occur in dimension at most
30; there are finitely many up to commensurability. One may
be able to explore the arithmetic of arithmetic Coxeter groups
for a long time—what is currently missing is a general theory of
arithmetic flags and forms to make predictions in a less ad hoc
manner.

Departing from the setting of Coxeter groups may also be
appealing, especially in low dimension. For example, the Coxeter
geometry makes the reduction theory of BHFs particularly
appealing over Z[i ] and Z[ω]. But Bestvina and Savin (7) are able
to work over other quadratic imaginary rings although the geom-
etry lacks homogeneity. One might study diforms over other
real quadratic rings, in the same way. More arithmetic may
be found in “thin” rather than arithmetic groups, e.g., in the
work of Stange (23) on Apollonian circle packings. Still, Coxeter
groups seem an appropriate starting place, where arithmetic
applications are low-hanging fruit.
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Math USSR Sbornik 1:429–444.

19. Johnson NW, Kellerhals R, Ratcliffe JG, Tschantz ST (2002) Commensurability classes
of hyperbolic Coxeter groups. Linear Algebra Appl 345:119–147.

20. Takeuchi K (1977) Commensurability classes of arithmetic triangle groups. J Fac Sci
Univ Tokyo Sect IA Math 24:201–212.

21. Takeuchi K (1977) Arithmetic triangle groups. J Math Soc Jpn 29:91–106.
22. Vinberg EB (1981) The nonexistence of crystallographic reflection groups in
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